Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import clueai | |
import torch | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v2") | |
model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v2").half() | |
# 使用 | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def preprocess(text): | |
text = text.replace("\n", "\\n").replace("\t", "\\t") | |
return text | |
def postprocess(text): | |
return text.replace("\\n", "\n").replace("\\t", "\t").replace('%20',' ') | |
def answer(text, sample=True, top_p=1, temperature=0.7): | |
'''sample:是否抽样。生成任务,可以设置为True; | |
top_p:0-1之间,生成的内容越多样''' | |
text = preprocess(text) | |
encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=768, return_tensors="pt").to(device) | |
if not sample: | |
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, num_beams=1, length_penalty=0.6) | |
else: | |
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=3) | |
out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True) | |
return postprocess(out_text[0]) | |
def clear_session(): | |
return '', None | |
def chatyuan_bot(input, history): | |
history = history or [] | |
if len(history) > 5: | |
history = history[-5:] | |
context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history]) | |
print(context) | |
input_text = context + "\n用户:" + input + "\n小元:" | |
output_text = answer(input_text) | |
history.append((input, output_text)) | |
print(history) | |
return history, history | |
block = gr.Blocks() | |
with block as demo: | |
gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1> | |
<font size=4>回答来自ChatYuan, 是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点</font> | |
""") | |
chatbot = gr.Chatbot(label='ChatYuan') | |
message = gr.Textbox() | |
state = gr.State() | |
message.submit(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state]) | |
with gr.Row(): | |
clear_history = gr.Button("👋 清除历史对话") | |
clear = gr.Button('🧹 清除发送框') | |
send = gr.Button("🚀 发送") | |
send.click(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state]) | |
clear.click(lambda: None, None, message, queue=False) | |
clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False) | |
def ChatYuan(api_key, text_prompt): | |
cl = clueai.Client(api_key, | |
check_api_key=True) | |
# generate a prediction for a prompt | |
# 需要返回得分的话,指定return_likelihoods="GENERATION" | |
prediction = cl.generate(model_name='ChatYuan-large', prompt=text_prompt) | |
# print the predicted text | |
print('prediction: {}'.format(prediction.generations[0].text)) | |
response = prediction.generations[0].text | |
if response == '': | |
response = "很抱歉,我无法回答这个问题" | |
return response | |
def chatyuan_bot_api(api_key, input, history): | |
history = history or [] | |
if len(history) > 5: | |
history = history[-5:] | |
context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history]) | |
print(context) | |
input_text = context + "\n用户:" + input + "\n小元:" | |
output_text = ChatYuan(api_key, input_text) | |
history.append((input, output_text)) | |
print(history) | |
return history, history | |
block = gr.Blocks() | |
with block as demo_1: | |
gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1> | |
<font size=4>回答来自ChatYuan, 以上是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点</font> | |
<font size=4>在使用此功能前,你需要有个API key. API key 可以通过这个<a href='https://www.clueai.cn/' target="_blank">平台</a>获取</font> | |
""") | |
api_key = gr.inputs.Textbox(label="请输入你的api-key(必填)", default="", type='password') | |
chatbot = gr.Chatbot(label='ChatYuan') | |
message = gr.Textbox() | |
state = gr.State() | |
message.submit(chatyuan_bot_api, inputs=[api_key,message, state], outputs=[chatbot, state]) | |
with gr.Row(): | |
clear_history = gr.Button("👋 清除历史对话") | |
clear = gr.Button('🧹 清除发送框') | |
send = gr.Button("🚀 发送") | |
send.click(chatyuan_bot_api, inputs=[api_key,message, state], outputs=[chatbot, state]) | |
clear.click(lambda: None, None, message, queue=False) | |
clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False) | |
block = gr.Blocks() | |
with block as introduction: | |
gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1> | |
<font size=4>😉ChatYuan: 元语功能型对话大模型 | |
<br> | |
<br> | |
👏ChatYuan-large-v2是一个支持中英双语的功能型对话语言大模型,是继ChatYuan系列中ChatYuan-large-v1开源后的又一个开源模型。ChatYuan-large-v2使用了和 v1版本相同的技术方案,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 | |
ChatYuan-large-v2是ChatYuan系列中以轻量化实现高质量效果的模型之一,用户可以在消费级显卡、 PC甚至手机上进行推理(INT4 最低只需 400M )。 | |
在chatyuan-large-v1的原有功能的基础上,我们给模型进行了如下优化: | |
- 增强了基础能力。原有上下文问答、创意性写作能力明显提升。 | |
- 新增了拒答能力。对于一些危险、有害的问题,学会了拒答处理。 | |
- 新增了代码生成功能。对于基础代码生成进行了一定程度优化。 | |
- 新增了表格生成功能。使生成的表格内容和格式更适配。 | |
- 增强了基础数学运算能力。 | |
- 最大长度token数扩展到4096。 | |
- 增强了模拟情景能力。 | |
- 新增了中英双语对话能力。.<br> | |
<br> | |
👀<a href='https://www.cluebenchmarks.com/clueai.html'>PromptCLUE-large</a>在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成. <br> | |
<br> | |
🚀<a href='https://www.clueai.cn/chat' target="_blank">在线Demo</a> | <a href='https://modelscope.cn/models/ClueAI/ChatYuan-large/summary' target="_blank">ModelScope</a> | <a href='https://huggingface.co/ClueAI/ChatYuan-large-v1' target="_blank">Huggingface</a> | <a href='https://www.clueai.cn' target="_blank">官网体验场</a> | <a href='https://github.com/clue-ai/clueai-python#ChatYuan%E5%8A%9F%E8%83%BD%E5%AF%B9%E8%AF%9D' target="_blank">ChatYuan-API</a> | <a href='https://github.com/clue-ai/ChatYuan' target="_blank">Github项目地址</a> | <a href='https://openi.pcl.ac.cn/ChatYuan/ChatYuan/src/branch/main/Fine_tuning_ChatYuan_large_with_pCLUE.ipynb' target="_blank">OpenI免费试用</a> | |
</font> | |
""") | |
gui = gr.TabbedInterface(interface_list=[introduction,demo, demo_1], tab_names=["相关介绍","开源模型", "API调用"]) | |
gui.launch(quiet=True,show_api=False, share = False) |