import os
import gradio as gr
import clueai
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v2")
model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v2")
# 使用
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.half()
base_info = ""
def preprocess(text):
text = f"{base_info}{text}"
text = text.replace("\n", "\\n").replace("\t", "\\t")
return text
def postprocess(text):
return text.replace("\\n", "\n").replace("\\t", "\t").replace(
'%20', ' ') #.replace(" ", " ")
generate_config = {
'do_sample': True,
'top_p': 0.9,
'top_k': 50,
'temperature': 0.7,
'num_beams': 1,
'max_length': 1024,
'min_length': 3,
'no_repeat_ngram_size': 5,
'length_penalty': 0.6,
'return_dict_in_generate': True,
'output_scores': True
}
def answer(
text,
top_p,
temperature,
sample=True,
):
'''sample:是否抽样。生成任务,可以设置为True;
top_p:0-1之间,生成的内容越多样'''
text = preprocess(text)
encoding = tokenizer(text=[text],
truncation=True,
padding=True,
max_length=1024,
return_tensors="pt").to(device)
if not sample:
out = model.generate(**encoding,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=1024,
num_beams=1,
length_penalty=0.6)
else:
out = model.generate(**encoding,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=1024,
do_sample=True,
top_p=top_p,
temperature=temperature,
no_repeat_ngram_size=12)
#out=model.generate(**encoding, **generate_config)
out_text = tokenizer.batch_decode(out["sequences"],
skip_special_tokens=True)
return postprocess(out_text[0])
def clear_session():
return '', None
def chatyuan_bot(input, history, top_p, temperature, num):
history = history or []
if len(history) > num:
history = history[-num:]
context = "\n".join([
f"用户:{input_text}\n小元:{answer_text}"
for input_text, answer_text in history
])
#print(context)
input_text = context + "\n用户:" + input + "\n小元:"
input_text = input_text.strip()
output_text = answer(input_text, top_p, temperature)
print("open_model".center(20, "="))
print(f"{input_text}\n{output_text}")
#print("="*20)
history.append((input, output_text))
#print(history)
return '', history, history
def chatyuan_bot_regenerate(input, history, top_p, temperature, num):
history = history or []
if history:
input = history[-1][0]
history = history[:-1]
if len(history) > num:
history = history[-num:]
context = "\n".join([
f"用户:{input_text}\n小元:{answer_text}"
for input_text, answer_text in history
])
#print(context)
input_text = context + "\n用户:" + input + "\n小元:"
input_text = input_text.strip()
output_text = answer(input_text, top_p, temperature)
print("open_model".center(20, "="))
print(f"{input_text}\n{output_text}")
history.append((input, output_text))
#print(history)
return '', history, history
block = gr.Blocks()
with block as demo:
gr.Markdown("""
元语智能——ChatYuan
回答来自ChatYuan, 是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点 | Answer generated by ChatYuan model
注意:gradio对markdown代码格式展示有限
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label='ChatYuan').style(height=400)
with gr.Column(scale=1):
num = gr.Slider(minimum=4,
maximum=10,
label="最大的对话轮数",
value=5,
step=1)
top_p = gr.Slider(minimum=0,
maximum=1,
label="top_p",
value=1,
step=0.1)
temperature = gr.Slider(minimum=0,
maximum=1,
label="temperature",
value=0.7,
step=0.1)
clear_history = gr.Button("👋 清除历史对话 | Clear History")
send = gr.Button("🚀 发送 | Send")
regenerate = gr.Button("🚀 重新生成本次结果 | regenerate")
message = gr.Textbox()
state = gr.State()
message.submit(chatyuan_bot,
inputs=[message, state, top_p, temperature, num],
outputs=[message, chatbot, state])
regenerate.click(chatyuan_bot_regenerate,
inputs=[message, state, top_p, temperature, num],
outputs=[message, chatbot, state])
send.click(chatyuan_bot,
inputs=[message, state, top_p, temperature, num],
outputs=[message, chatbot, state])
clear_history.click(fn=clear_session,
inputs=[],
outputs=[chatbot, state],
queue=False)
def ChatYuan(api_key, text_prompt, top_p):
generate_config = {
"do_sample": True,
"top_p": top_p,
"max_length": 128,
"min_length": 10,
"length_penalty": 1.0,
"num_beams": 1
}
cl = clueai.Client(api_key, check_api_key=True)
# generate a prediction for a prompt
# 需要返回得分的话,指定return_likelihoods="GENERATION"
prediction = cl.generate(model_name='ChatYuan-large', prompt=text_prompt)
# print the predicted text
#print('prediction: {}'.format(prediction.generations[0].text))
response = prediction.generations[0].text
if response == '':
response = "很抱歉,我无法回答这个问题"
return response
def chatyuan_bot_api(api_key, input, history, top_p, num):
history = history or []
if len(history) > num:
history = history[-num:]
context = "\n".join([
f"用户:{input_text}\n小元:{answer_text}"
for input_text, answer_text in history
])
input_text = context + "\n用户:" + input + "\n小元:"
input_text = input_text.strip()
output_text = ChatYuan(api_key, input_text, top_p)
print("api".center(20, "="))
print(f"api_key:{api_key}\n{input_text}\n{output_text}")
history.append((input, output_text))
return '', history, history
block = gr.Blocks()
with block as demo_1:
gr.Markdown("""元语智能——ChatYuan
回答来自ChatYuan, 以上是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点 | Answer generated by ChatYuan model
注意:gradio对markdown代码格式展示有限
在使用此功能前,你需要有个API key. API key 可以通过这个平台获取
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label='ChatYuan').style(height=400)
with gr.Column(scale=1):
api_key = gr.inputs.Textbox(label="请输入你的api-key(必填)",
default="",
type='password')
num = gr.Slider(minimum=4,
maximum=10,
label="最大的对话轮数",
value=5,
step=1)
top_p = gr.Slider(minimum=0,
maximum=1,
label="top_p",
value=1,
step=0.1)
clear_history = gr.Button("👋 清除历史对话 | Clear History")
send = gr.Button("🚀 发送 | Send")
message = gr.Textbox()
state = gr.State()
message.submit(chatyuan_bot_api,
inputs=[api_key, message, state, top_p, num],
outputs=[message, chatbot, state])
send.click(chatyuan_bot_api,
inputs=[api_key, message, state, top_p, num],
outputs=[message, chatbot, state])
clear_history.click(fn=clear_session,
inputs=[],
outputs=[chatbot, state],
queue=False)
block = gr.Blocks()
with block as introduction:
gr.Markdown("""元语智能——ChatYuan
😉ChatYuan: 元语功能型对话大模型 | General Model for Dialogue with ChatYuan
👏ChatYuan-large-v2是一个支持中英双语的功能型对话语言大模型,是继ChatYuan系列中ChatYuan-large-v1开源后的又一个开源模型。ChatYuan-large-v2使用了和 v1版本相同的技术方案,在微调数据、人类反馈强化学习、思维链等方面进行了优化。
ChatYuan large v2 is an open-source large language model for dialogue, supports both Chinese and English languages, and in ChatGPT style.
ChatYuan-large-v2是ChatYuan系列中以轻量化实现高质量效果的模型之一,用户可以在消费级显卡、 PC甚至手机上进行推理(INT4 最低只需 400M )。
在Chatyuan-large-v1的原有功能的基础上,我们给模型进行了如下优化:
- 新增了中英双语对话能力。
- 新增了拒答能力。对于一些危险、有害的问题,学会了拒答处理。
- 新增了代码生成功能。对于基础代码生成进行了一定程度优化。
- 增强了基础能力。原有上下文问答、创意性写作能力明显提升。
- 新增了表格生成功能。使生成的表格内容和格式更适配。
- 增强了基础数学运算能力。
- 最大长度token数扩展到4096。
- 增强了模拟情景能力。.
Based on the original functions of Chatyuan-large-v1, we optimized the model as follows:
-Added the ability to speak in both Chinese and English.
-Added the ability to refuse to answer. Learn to refuse to answer some dangerous and harmful questions.
-Added code generation functionality. Basic code generation has been optimized to a certain extent.
-Enhanced basic capabilities. The original contextual Q&A and creative writing skills have significantly improved.
-Added a table generation function. Make the generated table content and format more appropriate.
-Enhanced basic mathematical computing capabilities.
-The maximum number of length tokens has been expanded to 4096.
-Enhanced ability to simulate scenarios< br>
👀PromptCLUE-large在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成.
ModelScope | Huggingface | 官网体验场 | ChatYuan-API | Github项目地址 | OpenI免费试用
""")
gui = gr.TabbedInterface(
interface_list=[introduction, demo, demo_1],
tab_names=["相关介绍 | Introduction", "开源模型 | Online Demo", "API调用"])
gui.launch(quiet=True, show_api=False, share=False)