Spaces:
Paused
Paused
File size: 11,666 Bytes
273bfd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
#Change to requirements caller
import sys
import subprocess
def run_pip_install():
packages = [
"langgraph",
"langchain",
"langchain_openai",
"langchain_experimental",
"qdrant-client",
"pymupdf",
"tiktoken",
"huggingface_hub",
"openai",
"tavily-python"
]
package_string = " ".join(packages)
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "-qU"] + packages)
print("All required packages have been installed successfully.")
except subprocess.CalledProcessError:
print(f"Failed to install packages. Please run the following command manually:")
print(f"%pip install -qU {package_string}")
sys.exit(1)
# Run pip install
run_pip_install()
import os
import functools
import operator
from typing import Annotated, List, Tuple, Union, Dict, Optional
from typing_extensions import TypedDict
import uuid
from pathlib import Path
from langchain_core.tools import tool
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.vectorstores import Qdrant
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai.embeddings import OpenAIEmbeddings
from langgraph.graph import END, StateGraph
from huggingface_hub import hf_hub_download
# Environment setup
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
if not OPENAI_API_KEY:
raise ValueError("OPENAI_API_KEY not found in environment variables")
if not TAVILY_API_KEY:
raise ValueError("TAVILY_API_KEY not found in environment variables")
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
os.environ["TAVILY_API_KEY"] = TAVILY_API_KEY
# CHANGE TO HF DIRECTORY
WORKING_DIRECTORY = Path("/tmp/content/data")
WORKING_DIRECTORY.mkdir(parents=True, exist_ok=True)
# Utility functions
def create_random_subdirectory():
random_id = str(uuid.uuid4())[:8]
subdirectory_path = WORKING_DIRECTORY / random_id
subdirectory_path.mkdir(exist_ok=True)
return subdirectory_path
def get_current_files():
try:
files = [f.relative_to(WORKING_DIRECTORY) for f in WORKING_DIRECTORY.rglob("*") if f.is_file()]
return "\n".join(str(f) for f in files) if files else "No files written."
except Exception:
return "Unable to retrieve current files."
# Document loading change to upload in HF
def fetch_hbr_article():
pdf_path = hf_hub_download(repo_id="your-username/your-repo-name", filename="murthy-loneliness.pdf")
return PyMuPDFLoader(pdf_path).load()
# Document processing
def tiktoken_len(text):
tokens = tiktoken.encoding_for_model("gpt-4o-mini").encode(text)
return len(tokens)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300,
chunk_overlap=0,
length_function=tiktoken_len,
)
docs = fetch_hbr_article()
split_chunks = text_splitter.split_documents(docs)
# Embedding and vector store setup
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
qdrant_vectorstore = Qdrant.from_documents(
split_chunks,
embedding_model,
location=":memory:",
collection_name="extending_context_window_llama_3",
)
qdrant_retriever = qdrant_vectorstore.as_retriever()
# RAG setup
RAG_PROMPT = """
CONTEXT:
{context}
QUERY:
{question}
You are a helpful assistant. Use the available context to answer the question. If you can't answer the question, say you don't know.
"""
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
openai_chat_model = ChatOpenAI(model="gpt-4o-mini")
rag_chain = (
{"context": itemgetter("question") | qdrant_retriever, "question": itemgetter("question")}
| rag_prompt | openai_chat_model | StrOutputParser()
)
# Tool definitions
@tool
def create_outline(points: List[str], file_name: str) -> str:
"""Create and save an outline."""
with (WORKING_DIRECTORY / file_name).open("w") as file:
for i, point in enumerate(points):
file.write(f"{i + 1}. {point}\n")
return f"Outline saved to {file_name}"
@tool
def read_document(file_name: str, start: Optional[int] = None, end: Optional[int] = None) -> str:
"""Read the specified document."""
with (WORKING_DIRECTORY / file_name).open("r") as file:
lines = file.readlines()
if start is not None:
start = 0
return "\n".join(lines[start:end])
@tool
def write_document(content: str, file_name: str) -> str:
"""Create and save a text document."""
with (WORKING_DIRECTORY / file_name).open("w") as file:
file.write(content)
return f"Document saved to {file_name}"
@tool
def edit_document(file_name: str, inserts: Dict[int, str] = {}) -> str:
"""Edit a document by inserting text at specific line numbers."""
with (WORKING_DIRECTORY / file_name).open("r") as file:
lines = file.readlines()
sorted_inserts = sorted(inserts.items())
for line_number, text in sorted_inserts:
if 1 <= line_number <= len(lines) + 1:
lines.insert(line_number - 1, text + "\n")
else:
return f"Error: Line number {line_number} is out of range."
with (WORKING_DIRECTORY / file_name).open("w") as file:
file.writelines(lines)
return f"Document edited and saved to {file_name}"
@tool
def retrieve_information(query: str):
"""Use Retrieval Augmented Generation to retrieve information about the 'murthy-loneliness' paper."""
return rag_chain.invoke({"question": query})
# Agent creation helpers
def create_team_agent(llm, tools, system_prompt, agent_name, team_members):
return create_agent(
llm,
tools,
f"{system_prompt}\nBelow are files currently in your directory:\n{{current_files}}",
team_members
)
def create_agent_node(agent, name):
return functools.partial(agent_node, agent=agent, name=name)
def add_agent_to_graph(graph, agent_name, agent_node):
graph.add_node(agent_name, agent_node)
graph.add_edge(agent_name, "supervisor")
def create_team_supervisor(llm, team_description, team_members):
return create_team_supervisor(
llm,
f"You are a supervisor tasked with managing a conversation between the"
f" following workers: {', '.join(team_members)}. {team_description}"
f" When all workers are finished, you must respond with FINISH.",
team_members
)
def create_team_chain(graph, team_members):
return (
functools.partial(enter_chain, members=team_members)
| graph.compile()
)
# LLM setup
llm = ChatOpenAI(model="gpt-4-turbo")
# Agent creation
tavily_tool = TavilySearchResults(max_results=5)
search_agent = create_team_agent(
llm,
[tavily_tool],
"You are a research assistant who can search for up-to-date info using the tavily search engine.",
"Search",
["Search", "PaperInformationRetriever"]
)
research_agent = create_team_agent(
llm,
[retrieve_information],
"You are a research assistant who can provide specific information on the provided paper: 'murthy-loneliness.pdf'. You must only respond with information about the paper related to the request.",
"PaperInformationRetriever",
["Search", "PaperInformationRetriever"]
)
doc_writer_agent = create_team_agent(
llm,
[write_document, edit_document, read_document],
"You are an expert writing technical social media posts.",
"DocWriter",
["DocWriter", "NoteTaker", "CopyEditor", "VoiceEditor"]
)
note_taking_agent = create_team_agent(
llm,
[create_outline, read_document],
"You are an expert senior researcher tasked with writing a social media post outline and taking notes to craft a social media post.",
"NoteTaker",
["DocWriter", "NoteTaker", "CopyEditor", "VoiceEditor"]
)
copy_editor_agent = create_team_agent(
llm,
[write_document, edit_document, read_document],
"You are an expert copy editor who focuses on fixing grammar, spelling, and tone issues.",
"CopyEditor",
["DocWriter", "NoteTaker", "CopyEditor", "VoiceEditor"]
)
voice_editor_agent = create_team_agent(
llm,
[write_document, edit_document, read_document],
"You are an expert in crafting and refining the voice and tone of social media posts. You edit the document to ensure it has a consistent, professional, and engaging voice appropriate for social media platforms.",
"VoiceEditor",
["DocWriter", "NoteTaker", "CopyEditor", "VoiceEditor"]
)
# Node creation
search_node = create_agent_node(search_agent, "Search")
research_node = create_agent_node(research_agent, "PaperInformationRetriever")
doc_writing_node = create_agent_node(doc_writer_agent, "DocWriter")
note_taking_node = create_agent_node(note_taking_agent, "NoteTaker")
copy_editing_node = create_agent_node(copy_editor_agent, "CopyEditor")
voice_node = create_agent_node(voice_editor_agent, "VoiceEditor")
# Graph creation
research_graph = StateGraph(ResearchTeamState)
add_agent_to_graph(research_graph, "Search", search_node)
add_agent_to_graph(research_graph, "PaperInformationRetriever", research_node)
authoring_graph = StateGraph(DocWritingState)
add_agent_to_graph(authoring_graph, "DocWriter", doc_writing_node)
add_agent_to_graph(authoring_graph, "NoteTaker", note_taking_node)
add_agent_to_graph(authoring_graph, "CopyEditor", copy_editing_node)
add_agent_to_graph(authoring_graph, "VoiceEditor", voice_node)
# Supervisor creation
research_supervisor = create_team_supervisor(
llm,
"Given the following user request, determine the subject to be researched and respond with the worker to act next.",
["Search", "PaperInformationRetriever"]
)
doc_writing_supervisor = create_team_supervisor(
llm,
"Given the following user request, determine which worker should act next. Each worker will perform a task and respond with their results and status.",
["DocWriter", "NoteTaker", "CopyEditor", "VoiceEditor"]
)
# Graph compilation
research_graph.add_node("supervisor", research_supervisor)
research_graph.set_entry_point("supervisor")
research_chain = create_team_chain(research_graph, research_graph.nodes)
authoring_graph.add_node("supervisor", doc_writing_supervisor)
authoring_graph.set_entry_point("supervisor")
authoring_chain = create_team_chain(authoring_graph, authoring_graph.nodes)
# Meta-supervisor setup
super_graph = StateGraph(State)
super_graph.add_node("Research team", get_last_message | research_chain | join_graph)
super_graph.add_node("SocialMedia team", get_last_message | authoring_chain | join_graph)
super_graph.add_node("supervisor", supervisor_node)
super_graph.add_edge("Research team", "supervisor")
super_graph.add_edge("SocialMedia team", "supervisor")
super_graph.add_conditional_edges(
"supervisor",
lambda x: x["next"],
{
"SocialMedia team": "SocialMedia team",
"Research team": "Research team",
"FINISH": END,
},
)
super_graph.set_entry_point("supervisor")
super_graph = super_graph.compile()
# Example usage
user_input = input("Enter your request for the social media post: ")
for s in super_graph.stream(
{
"messages": [
HumanMessage(content=user_input)
],
},
{"recursion_limit": 50},
):
if "__end__" not in s:
print(s)
print("---") |