Spaces:
Paused
Paused
import models | |
#import constants | |
#from langchain_experimental.text_splitter import SemanticChunker | |
from langchain_qdrant import QdrantVectorStore, Qdrant | |
from langchain_community.document_loaders import PyPDFLoader, UnstructuredURLLoader | |
from qdrant_client.http.models import VectorParams | |
import pymupdf | |
import requests | |
from transformers import AutoTokenizer | |
def extract_links_from_pdf(pdf_path): | |
links = [] | |
doc = pymupdf.open(pdf_path) | |
for page in doc: | |
for link in page.get_links(): | |
if link['uri']: | |
links.append(link['uri']) | |
return links | |
def load_documents_from_url(url): | |
try: | |
# Check if it's a PDF | |
if url.endswith(".pdf"): | |
try: | |
loader = PyPDFLoader(url) | |
return loader.load() | |
except Exception as e: | |
print(f"Error loading PDF from {url}: {e}") | |
return None | |
# Fetch the content and check for video pages | |
try: | |
response = requests.head(url, timeout=10) # Timeout for fetching headers | |
content_type = response.headers.get('Content-Type', '') | |
except Exception as e: | |
print(f"Error fetching headers from {url}: {e}") | |
return None | |
# Ignore video content (flagged for now) | |
if 'video' in content_type: | |
return None | |
if 'youtube' in url: | |
return None | |
# Otherwise, treat it as an HTML page | |
try: | |
loader = UnstructuredURLLoader([url]) | |
return loader.load() | |
except Exception as e: | |
print(f"Error loading HTML from {url}: {e}") | |
return None | |
except Exception as e: | |
print(f"General error loading from {url}: {e}") | |
return None | |
#gather kai's docs | |
filepaths = ["./test_docs/Employee Statistics FINAL.pdf","./test_docs/Employer Statistics FINAL.pdf","./test_docs/Articles To Share.pdf"] | |
all_links = [] | |
for pdf_path in filepaths: | |
all_links.extend(extract_links_from_pdf(pdf_path)) | |
unique_links = list(set(all_links)) | |
print(unique_links) | |
documents = [] | |
for link in unique_links: | |
doc = load_documents_from_url(link) | |
#print(f"loaded doc from {link}") | |
if doc: | |
documents.extend(doc) | |
#print(len(documents)) | |
#semantic_split_docs = models.semanticChunker.split_documents(documents) | |
semantic_tuned_split_docs = models.semanticChunker_tuned.split_documents(documents) | |
#RCTS_split_docs = models.RCTS.split_documents(documents) | |
#print(len(semantic_split_docs)) | |
print(len(semantic_tuned_split_docs)) | |
#tokenizer = models.tuned_embeddings.client.tokenizer | |
# | |
#token_sizes = [len(tokenizer.encode(chunk)) for chunk in semantic_tuned_split_docs] | |
# Display the token sizes | |
#for idx, size in enumerate(token_sizes): | |
# print(f"Chunk {idx + 1}: {size} tokens") | |
# | |
#exit() | |
#add them to the existing qdrant client | |
collection_name = "docs_from_ripped_urls_semantic_tuned" | |
collections = models.qdrant_client.get_collections() | |
collection_names = [collection.name for collection in collections.collections] | |
# If the collection does not exist, create it | |
if collection_name not in collection_names: | |
models.qdrant_client.create_collection( | |
collection_name=collection_name, | |
vectors_config=VectorParams(size=1024, distance="Cosine") | |
) | |
qdrant_vector_store = QdrantVectorStore( | |
client=models.qdrant_client, | |
collection_name=collection_name, | |
embedding=models.tuned_embeddings | |
) | |
qdrant_vector_store.add_documents(semantic_tuned_split_docs) | |
collection_info = models.qdrant_client.get_collection(collection_name) | |
print(f"Number of points in collection: {collection_info.points_count}") |