danicafisher commited on
Commit
1855f0c
1 Parent(s): d5c15c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -32
app.py CHANGED
@@ -12,39 +12,39 @@ import uuid
12
  import chainlit as cl
13
  import os
14
 
15
- # chat_model = ChatOpenAI(model="gpt-4o-mini")
16
- # te3_small = OpenAIEmbeddings(model="text-embedding-3-small")
17
- # set_llm_cache(InMemoryCache())
18
- # text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100)
19
- # rag_system_prompt_template = """\
20
- # You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
21
- # """
22
- # rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},]
23
- # rag_user_prompt_template = """\
24
- # Question:
25
- # {question}
26
- # Context:
27
- # {context}
28
- # """
29
- # chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)])
30
 
31
  @cl.on_chat_start
32
  async def on_chat_start():
33
- # qdrant_client = QdrantClient(url=os.environ["QDRANT_ENDPOINT"], api_key=os.environ["QDRANT_API_KEY"])
34
- # qdrant_store = Qdrant(
35
- # client=qdrant_client,
36
- # collection_name="kai_test_docs",
37
- # embeddings=te3_small
38
- # )
39
- # retriever = qdrant_store.as_retriever()
40
 
41
- # global retrieval_augmented_qa_chain
42
- # retrieval_augmented_qa_chain = (
43
- # {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
44
- # | RunnablePassthrough.assign(context=itemgetter("context"))
45
- # | chat_prompt
46
- # | chat_model
47
- # )
48
 
49
  await cl.Message(content="YAsk away!").send()
50
 
@@ -54,6 +54,5 @@ def rename(orig_author: str):
54
 
55
  @cl.on_message
56
  async def main(message: cl.Message):
57
- # response = retrieval_augmented_qa_chain.invoke({"question": message.content})
58
- # await cl.Message(content=response.content).send()
59
- await cl.Message(content="Message response").send()
 
12
  import chainlit as cl
13
  import os
14
 
15
+ chat_model = ChatOpenAI(model="gpt-4o-mini")
16
+ te3_small = OpenAIEmbeddings(model="text-embedding-3-small")
17
+ set_llm_cache(InMemoryCache())
18
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100)
19
+ rag_system_prompt_template = """\
20
+ You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
21
+ """
22
+ rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},]
23
+ rag_user_prompt_template = """\
24
+ Question:
25
+ {question}
26
+ Context:
27
+ {context}
28
+ """
29
+ chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)])
30
 
31
  @cl.on_chat_start
32
  async def on_chat_start():
33
+ qdrant_client = QdrantClient(url=os.environ["QDRANT_ENDPOINT"], api_key=os.environ["QDRANT_API_KEY"])
34
+ qdrant_store = Qdrant(
35
+ client=qdrant_client,
36
+ collection_name="kai_test_docs",
37
+ embeddings=te3_small
38
+ )
39
+ retriever = qdrant_store.as_retriever()
40
 
41
+ global retrieval_augmented_qa_chain
42
+ retrieval_augmented_qa_chain = (
43
+ {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
44
+ | RunnablePassthrough.assign(context=itemgetter("context"))
45
+ | chat_prompt
46
+ | chat_model
47
+ )
48
 
49
  await cl.Message(content="YAsk away!").send()
50
 
 
54
 
55
  @cl.on_message
56
  async def main(message: cl.Message):
57
+ response = retrieval_augmented_qa_chain.invoke({"question": message.content})
58
+ await cl.Message(content=response.content).send()