Spaces:
Paused
Paused
danicafisher
commited on
Commit
•
dc4e03f
1
Parent(s):
4fcbda5
Update graph.py
Browse files
graph.py
CHANGED
@@ -1,331 +1,331 @@
|
|
1 |
-
from typing import Dict, List, TypedDict, Sequence
|
2 |
-
from langgraph.graph import StateGraph, END
|
3 |
-
from langchain.schema import StrOutputParser
|
4 |
-
from langchain.schema.runnable import RunnablePassthrough
|
5 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
6 |
-
import models
|
7 |
-
import prompts
|
8 |
-
import json
|
9 |
-
from operator import itemgetter
|
10 |
-
from langgraph.errors import GraphRecursionError
|
11 |
-
|
12 |
-
|
13 |
-
#######################################
|
14 |
-
### Research Team Components ###
|
15 |
-
#######################################
|
16 |
-
class ResearchState(TypedDict):
|
17 |
-
workflow: List[str]
|
18 |
-
topic: str
|
19 |
-
research_data: Dict[str, str]
|
20 |
-
next: str
|
21 |
-
message_to_manager: str
|
22 |
-
message_from_manager: str
|
23 |
-
|
24 |
-
#
|
25 |
-
# Reserach Chains and Tools
|
26 |
-
#
|
27 |
-
qdrant_research_chain = (
|
28 |
-
{"context": itemgetter("topic") | models.compression_retriever, "topic": itemgetter("topic")}
|
29 |
-
| RunnablePassthrough.assign(context=itemgetter("context"))
|
30 |
-
| {"response": prompts.research_query_prompt | models.gpt4o_mini | StrOutputParser(), "context": itemgetter("context")}
|
31 |
-
)
|
32 |
-
|
33 |
-
tavily_tool = TavilySearchResults(max_results=3)
|
34 |
-
query_chain = ( prompts.search_query_prompt | models.gpt4o_mini | StrOutputParser() )
|
35 |
-
tavily_simple = ({"tav_results": tavily_tool} | prompts.tavily_prompt | models.gpt4o_mini | StrOutputParser())
|
36 |
-
tavily_chain = (
|
37 |
-
{"query": query_chain} | tavily_simple
|
38 |
-
)
|
39 |
-
|
40 |
-
research_supervisor_chain = (
|
41 |
-
prompts.research_supervisor_prompt | models.gpt4o | StrOutputParser()
|
42 |
-
)
|
43 |
-
|
44 |
-
#
|
45 |
-
# Reserach Node Defs
|
46 |
-
#
|
47 |
-
def query_qdrant(state: ResearchState) -> ResearchState:
|
48 |
-
topic = state["topic"]
|
49 |
-
result = qdrant_research_chain.invoke({"topic": topic})
|
50 |
-
print(result)
|
51 |
-
state["research_data"]["qdrant_results"] = result["response"]
|
52 |
-
state['workflow'].append("query_qdrant")
|
53 |
-
print(state['workflow'])
|
54 |
-
|
55 |
-
return state
|
56 |
-
|
57 |
-
def web_search(state: ResearchState) -> ResearchState:
|
58 |
-
topic = state["topic"]
|
59 |
-
qdrant_results = state["research_data"].get("qdrant_results", "No previous results available.")
|
60 |
-
result = tavily_chain.invoke({"topic": topic,"qdrant_results": qdrant_results })
|
61 |
-
print(result)
|
62 |
-
state["research_data"]["web_search_results"] = result
|
63 |
-
state['workflow'].append("web_search")
|
64 |
-
print(state['workflow'])
|
65 |
-
return state
|
66 |
-
|
67 |
-
def research_supervisor(state):
|
68 |
-
message_from_manager = state["message_from_manager"]
|
69 |
-
collected_data = state["research_data"]
|
70 |
-
topic = state['topic']
|
71 |
-
supervisor_result = research_supervisor_chain.invoke({"message_from_manager": message_from_manager, "collected_data": collected_data, "topic": topic})
|
72 |
-
lines = supervisor_result.split('\n')
|
73 |
-
print(supervisor_result)
|
74 |
-
for line in lines:
|
75 |
-
if line.startswith('Next Action: '):
|
76 |
-
state['next'] = line[len('Next Action: '):].strip() # Extract the next action content
|
77 |
-
elif line.startswith('Message to project manager: '):
|
78 |
-
state['message_to_manager'] = line[len('Message to project manager: '):].strip()
|
79 |
-
state['workflow'].append("research_supervisor")
|
80 |
-
print(state['workflow'])
|
81 |
-
return state
|
82 |
-
|
83 |
-
def research_end(state):
|
84 |
-
state['workflow'].append("research_end")
|
85 |
-
print(state['workflow'])
|
86 |
-
return state
|
87 |
-
|
88 |
-
#######################################
|
89 |
-
### Writing Team Components ###
|
90 |
-
#######################################
|
91 |
-
class WritingState(TypedDict):
|
92 |
-
workflow: List[str]
|
93 |
-
topic: str
|
94 |
-
research_data: Dict[str, str]
|
95 |
-
draft_posts: Sequence[str]
|
96 |
-
final_post: str
|
97 |
-
next: str
|
98 |
-
message_to_manager: str
|
99 |
-
message_from_manager: str
|
100 |
-
review_comments: str
|
101 |
-
style_checked: bool
|
102 |
-
|
103 |
-
#
|
104 |
-
# Writing Chains
|
105 |
-
#
|
106 |
-
writing_supervisor_chain = (
|
107 |
-
prompts.writing_supervisor_prompt | models.gpt4o | StrOutputParser()
|
108 |
-
)
|
109 |
-
|
110 |
-
post_creation_chain = (
|
111 |
-
prompts.post_creation_prompt | models.gpt4o_mini | StrOutputParser()
|
112 |
-
)
|
113 |
-
|
114 |
-
post_editor_chain = (
|
115 |
-
prompts.post_editor_prompt | models.gpt4o | StrOutputParser()
|
116 |
-
)
|
117 |
-
|
118 |
-
post_review_chain = (
|
119 |
-
prompts.post_review_prompt | models.gpt4o | StrOutputParser()
|
120 |
-
)
|
121 |
-
|
122 |
-
#
|
123 |
-
# Writing Node Defs
|
124 |
-
#
|
125 |
-
def post_creation(state):
|
126 |
-
topic = state['topic']
|
127 |
-
drafts = state['draft_posts']
|
128 |
-
collected_data = state["research_data"]
|
129 |
-
review_comments = state['review_comments']
|
130 |
-
results = post_creation_chain.invoke({"topic": topic, "collected_data": collected_data, "drafts": drafts, "review_comments": review_comments})
|
131 |
-
print(results)
|
132 |
-
state['draft_posts'].append(results)
|
133 |
-
state['workflow'].append("post_creation")
|
134 |
-
print(state['workflow'])
|
135 |
-
return state
|
136 |
-
|
137 |
-
def post_editor(state):
|
138 |
-
current_draft = state['draft_posts'][-1]
|
139 |
-
styleguide = prompts.style_guide_text
|
140 |
-
review_comments = state['review_comments']
|
141 |
-
results = post_editor_chain.invoke({"current_draft": current_draft, "styleguide": styleguide, "review_comments": review_comments})
|
142 |
-
print(results)
|
143 |
-
state['draft_posts'].append(results)
|
144 |
-
state['workflow'].append("post_editor")
|
145 |
-
print(state['workflow'])
|
146 |
-
return state
|
147 |
-
|
148 |
-
def post_review(state):
|
149 |
-
print("post_review node")
|
150 |
-
current_draft = state['draft_posts'][-1]
|
151 |
-
styleguide = prompts.style_guide_text
|
152 |
-
results = post_review_chain.invoke({"current_draft": current_draft, "styleguide": styleguide})
|
153 |
-
print(results)
|
154 |
-
data = json.loads(results.strip())
|
155 |
-
state['review_comments'] = data["Comments on current draft"]
|
156 |
-
if data["Draft Acceptable"] == 'Yes':
|
157 |
-
state['final_post'] = state['draft_posts'][-1]
|
158 |
-
state['workflow'].append("post_review")
|
159 |
-
print(state['workflow'])
|
160 |
-
return state
|
161 |
-
|
162 |
-
def writing_end(state):
|
163 |
-
print("writing_end node")
|
164 |
-
state['workflow'].append("writing_end")
|
165 |
-
print(state['workflow'])
|
166 |
-
return state
|
167 |
-
|
168 |
-
def writing_supervisor(state):
|
169 |
-
print("writing_supervisor node")
|
170 |
-
message_from_manager = state['message_from_manager']
|
171 |
-
topic = state['topic']
|
172 |
-
drafts = state['draft_posts']
|
173 |
-
final_draft = state['final_post']
|
174 |
-
review_comments = state['review_comments']
|
175 |
-
supervisor_result = writing_supervisor_chain.invoke({"review_comments": review_comments, "message_from_manager": message_from_manager, "topic": topic, "drafts": drafts, "final_draft": final_draft})
|
176 |
-
print(supervisor_result)
|
177 |
-
lines = supervisor_result.split('\n')
|
178 |
-
for line in lines:
|
179 |
-
if line.startswith('Next Action: '):
|
180 |
-
state['next'] = line[len('Next Action: '):].strip() # Extract the next action content
|
181 |
-
elif line.startswith('Message to project manager: '):
|
182 |
-
state['message_to_manager'] = line[len('Message to project manager: '):].strip()
|
183 |
-
state['workflow'].append("writing_supervisor")
|
184 |
-
print(state['workflow'])
|
185 |
-
return state
|
186 |
-
|
187 |
-
#######################################
|
188 |
-
### Overarching Graph Components ###
|
189 |
-
#######################################
|
190 |
-
class State(TypedDict):
|
191 |
-
workflow: List[str]
|
192 |
-
topic: str
|
193 |
-
research_data: Dict[str, str]
|
194 |
-
draft_posts: Sequence[str]
|
195 |
-
final_post: str
|
196 |
-
next: str
|
197 |
-
user_input: str
|
198 |
-
message_to_manager: str
|
199 |
-
message_from_manager: str
|
200 |
-
last_active_team :str
|
201 |
-
next_team: str
|
202 |
-
review_comments: str
|
203 |
-
|
204 |
-
#
|
205 |
-
# Complete Graph Chains
|
206 |
-
#
|
207 |
-
overall_supervisor_chain = (
|
208 |
-
prompts.overall_supervisor_prompt | models.gpt4o | StrOutputParser()
|
209 |
-
)
|
210 |
-
|
211 |
-
#
|
212 |
-
# Complete Graph Node defs
|
213 |
-
#
|
214 |
-
def overall_supervisor(state):
|
215 |
-
init_user_query = state["user_input"]
|
216 |
-
message_to_manager = state['message_to_manager']
|
217 |
-
last_active_team = state['last_active_team']
|
218 |
-
final_post = state['final_post']
|
219 |
-
supervisor_result = overall_supervisor_chain.invoke({"query": init_user_query, "message_to_manager": message_to_manager, "last_active_team": last_active_team, "final_post": final_post})
|
220 |
-
print(supervisor_result)
|
221 |
-
lines = supervisor_result.split('\n')
|
222 |
-
for line in lines:
|
223 |
-
if line.startswith('Next Action: '):
|
224 |
-
state['next_team'] = line[len('Next Action: '):].strip() # Extract the next action content
|
225 |
-
elif line.startswith('Extracted Topic: '):
|
226 |
-
state['topic'] = line[len('Extracted Topic: '):].strip() # Extract the next action content
|
227 |
-
elif line.startswith('Message to supervisor: '):
|
228 |
-
state['message_from_manager'] = line[len('Message to supervisor: '):].strip() # Extract the next action content
|
229 |
-
state['workflow'].append("overall_supervisor")
|
230 |
-
print(state['workflow'])
|
231 |
-
return state
|
232 |
-
|
233 |
-
#######################################
|
234 |
-
### Graph structures ###
|
235 |
-
#######################################
|
236 |
-
|
237 |
-
#
|
238 |
-
# Reserach Graph Nodes
|
239 |
-
#
|
240 |
-
research_graph = StateGraph(ResearchState)
|
241 |
-
research_graph.add_node("query_qdrant", query_qdrant)
|
242 |
-
research_graph.add_node("web_search", web_search)
|
243 |
-
research_graph.add_node("research_supervisor", research_supervisor)
|
244 |
-
research_graph.add_node("research_end", research_end)
|
245 |
-
#
|
246 |
-
# Reserach Graph Edges
|
247 |
-
#
|
248 |
-
research_graph.set_entry_point("research_supervisor")
|
249 |
-
research_graph.add_edge("query_qdrant", "research_supervisor")
|
250 |
-
research_graph.add_edge("web_search", "research_supervisor")
|
251 |
-
research_graph.add_conditional_edges(
|
252 |
-
"research_supervisor",
|
253 |
-
lambda x: x["next"],
|
254 |
-
{"query_qdrant": "query_qdrant", "web_search": "web_search", "FINISH": "research_end"},
|
255 |
-
)
|
256 |
-
research_graph_comp = research_graph.compile()
|
257 |
-
|
258 |
-
#
|
259 |
-
# Writing Graph Nodes
|
260 |
-
#
|
261 |
-
writing_graph = StateGraph(WritingState)
|
262 |
-
writing_graph.add_node("post_creation", post_creation)
|
263 |
-
writing_graph.add_node("post_editor", post_editor)
|
264 |
-
writing_graph.add_node("post_review", post_review)
|
265 |
-
writing_graph.add_node("writing_supervisor", writing_supervisor)
|
266 |
-
writing_graph.add_node("writing_end", writing_end)
|
267 |
-
#
|
268 |
-
# Writing Graph Edges
|
269 |
-
#
|
270 |
-
writing_graph.set_entry_point("writing_supervisor")
|
271 |
-
writing_graph.add_edge("post_creation", "post_editor")
|
272 |
-
writing_graph.add_edge("post_editor", "post_review")
|
273 |
-
writing_graph.add_edge("post_review", "writing_supervisor")
|
274 |
-
writing_graph.add_conditional_edges(
|
275 |
-
"writing_supervisor",
|
276 |
-
lambda x: x["next"],
|
277 |
-
{"NEW DRAFT": "post_creation",
|
278 |
-
"FINISH": "writing_end"},
|
279 |
-
)
|
280 |
-
writing_graph_comp = writing_graph.compile()
|
281 |
-
|
282 |
-
#
|
283 |
-
# Complete Graph Nodes
|
284 |
-
#
|
285 |
-
overall_graph = StateGraph(State)
|
286 |
-
overall_graph.add_node("overall_supervisor", overall_supervisor)
|
287 |
-
overall_graph.add_node("research_team_graph", research_graph_comp)
|
288 |
-
overall_graph.add_node("writing_team_graph", writing_graph_comp)
|
289 |
-
#
|
290 |
-
# Complete Graph Edges
|
291 |
-
#
|
292 |
-
overall_graph.set_entry_point("overall_supervisor")
|
293 |
-
overall_graph.add_edge("research_team_graph", "overall_supervisor")
|
294 |
-
overall_graph.add_edge("writing_team_graph", "overall_supervisor")
|
295 |
-
overall_graph.add_conditional_edges(
|
296 |
-
"overall_supervisor",
|
297 |
-
lambda x: x["next_team"],
|
298 |
-
{"research_team": "research_team_graph",
|
299 |
-
"writing_team": "writing_team_graph",
|
300 |
-
"FINISH": END},
|
301 |
-
)
|
302 |
-
app = overall_graph.compile()
|
303 |
-
|
304 |
-
|
305 |
-
#######################################
|
306 |
-
### Run method ###
|
307 |
-
#######################################
|
308 |
-
|
309 |
-
def getSocialMediaPost(userInput: str) -> str:
|
310 |
-
finalPost = ""
|
311 |
-
initial_state = State(
|
312 |
-
workflow = [],
|
313 |
-
topic= "",
|
314 |
-
research_data = {},
|
315 |
-
draft_posts = [],
|
316 |
-
final_post = [],
|
317 |
-
next = [],
|
318 |
-
next_team = [],
|
319 |
-
user_input=userInput,
|
320 |
-
message_to_manager="",
|
321 |
-
message_from_manager="",
|
322 |
-
last_active_team="",
|
323 |
-
review_comments=""
|
324 |
-
)
|
325 |
-
results = app.invoke(initial_state)
|
326 |
-
try:
|
327 |
-
results = app.invoke(initial_state, {"recursion_limit": 40})
|
328 |
-
except GraphRecursionError:
|
329 |
-
return "Recursion Error"
|
330 |
-
finalPost = results['final_post']
|
331 |
return finalPost
|
|
|
1 |
+
from typing import Dict, List, TypedDict, Sequence
|
2 |
+
from langgraph.graph import StateGraph, END
|
3 |
+
from langchain.schema import StrOutputParser
|
4 |
+
from langchain.schema.runnable import RunnablePassthrough
|
5 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
6 |
+
import models
|
7 |
+
import prompts
|
8 |
+
import json
|
9 |
+
from operator import itemgetter
|
10 |
+
from langgraph.errors import GraphRecursionError
|
11 |
+
|
12 |
+
|
13 |
+
#######################################
|
14 |
+
### Research Team Components ###
|
15 |
+
#######################################
|
16 |
+
class ResearchState(TypedDict):
|
17 |
+
workflow: List[str]
|
18 |
+
topic: str
|
19 |
+
research_data: Dict[str, str]
|
20 |
+
next: str
|
21 |
+
message_to_manager: str
|
22 |
+
message_from_manager: str
|
23 |
+
|
24 |
+
#
|
25 |
+
# Reserach Chains and Tools
|
26 |
+
#
|
27 |
+
qdrant_research_chain = (
|
28 |
+
{"context": itemgetter("topic") | models.compression_retriever, "topic": itemgetter("topic")}
|
29 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
30 |
+
| {"response": prompts.research_query_prompt | models.gpt4o_mini | StrOutputParser(), "context": itemgetter("context")}
|
31 |
+
)
|
32 |
+
|
33 |
+
tavily_tool = TavilySearchResults(max_results=3)
|
34 |
+
query_chain = ( prompts.search_query_prompt | models.gpt4o_mini | StrOutputParser() )
|
35 |
+
tavily_simple = ({"tav_results": tavily_tool} | prompts.tavily_prompt | models.gpt4o_mini | StrOutputParser())
|
36 |
+
tavily_chain = (
|
37 |
+
{"query": query_chain} | tavily_simple
|
38 |
+
)
|
39 |
+
|
40 |
+
research_supervisor_chain = (
|
41 |
+
prompts.research_supervisor_prompt | models.gpt4o | StrOutputParser()
|
42 |
+
)
|
43 |
+
|
44 |
+
#
|
45 |
+
# Reserach Node Defs
|
46 |
+
#
|
47 |
+
def query_qdrant(state: ResearchState) -> ResearchState:
|
48 |
+
topic = state["topic"]
|
49 |
+
result = qdrant_research_chain.invoke({"topic": topic})
|
50 |
+
print(result)
|
51 |
+
state["research_data"]["qdrant_results"] = result["response"]
|
52 |
+
state['workflow'].append("query_qdrant")
|
53 |
+
print(state['workflow'])
|
54 |
+
|
55 |
+
return state
|
56 |
+
|
57 |
+
def web_search(state: ResearchState) -> ResearchState:
|
58 |
+
topic = state["topic"]
|
59 |
+
qdrant_results = state["research_data"].get("qdrant_results", "No previous results available.")
|
60 |
+
result = tavily_chain.invoke({"topic": topic,"qdrant_results": qdrant_results })
|
61 |
+
print(result)
|
62 |
+
state["research_data"]["web_search_results"] = result
|
63 |
+
state['workflow'].append("web_search")
|
64 |
+
print(state['workflow'])
|
65 |
+
return state
|
66 |
+
|
67 |
+
def research_supervisor(state):
|
68 |
+
message_from_manager = state["message_from_manager"]
|
69 |
+
collected_data = state["research_data"]
|
70 |
+
topic = state['topic']
|
71 |
+
supervisor_result = research_supervisor_chain.invoke({"message_from_manager": message_from_manager, "collected_data": collected_data, "topic": topic})
|
72 |
+
lines = supervisor_result.split('\n')
|
73 |
+
print(supervisor_result)
|
74 |
+
for line in lines:
|
75 |
+
if line.startswith('Next Action: '):
|
76 |
+
state['next'] = line[len('Next Action: '):].strip() # Extract the next action content
|
77 |
+
elif line.startswith('Message to project manager: '):
|
78 |
+
state['message_to_manager'] = line[len('Message to project manager: '):].strip()
|
79 |
+
state['workflow'].append("research_supervisor")
|
80 |
+
print(state['workflow'])
|
81 |
+
return state
|
82 |
+
|
83 |
+
def research_end(state):
|
84 |
+
state['workflow'].append("research_end")
|
85 |
+
print(state['workflow'])
|
86 |
+
return state
|
87 |
+
|
88 |
+
#######################################
|
89 |
+
### Writing Team Components ###
|
90 |
+
#######################################
|
91 |
+
class WritingState(TypedDict):
|
92 |
+
workflow: List[str]
|
93 |
+
topic: str
|
94 |
+
research_data: Dict[str, str]
|
95 |
+
draft_posts: Sequence[str]
|
96 |
+
final_post: str
|
97 |
+
next: str
|
98 |
+
message_to_manager: str
|
99 |
+
message_from_manager: str
|
100 |
+
review_comments: str
|
101 |
+
style_checked: bool
|
102 |
+
|
103 |
+
#
|
104 |
+
# Writing Chains
|
105 |
+
#
|
106 |
+
writing_supervisor_chain = (
|
107 |
+
prompts.writing_supervisor_prompt | models.gpt4o | StrOutputParser()
|
108 |
+
)
|
109 |
+
|
110 |
+
post_creation_chain = (
|
111 |
+
prompts.post_creation_prompt | models.gpt4o_mini | StrOutputParser()
|
112 |
+
)
|
113 |
+
|
114 |
+
post_editor_chain = (
|
115 |
+
prompts.post_editor_prompt | models.gpt4o | StrOutputParser()
|
116 |
+
)
|
117 |
+
|
118 |
+
post_review_chain = (
|
119 |
+
prompts.post_review_prompt | models.gpt4o | StrOutputParser()
|
120 |
+
)
|
121 |
+
|
122 |
+
#
|
123 |
+
# Writing Node Defs
|
124 |
+
#
|
125 |
+
def post_creation(state):
|
126 |
+
topic = state['topic']
|
127 |
+
drafts = state['draft_posts']
|
128 |
+
collected_data = state["research_data"]
|
129 |
+
review_comments = state['review_comments']
|
130 |
+
results = post_creation_chain.invoke({"topic": topic, "collected_data": collected_data, "drafts": drafts, "review_comments": review_comments})
|
131 |
+
print(results)
|
132 |
+
state['draft_posts'].append(results)
|
133 |
+
state['workflow'].append("post_creation")
|
134 |
+
print(state['workflow'])
|
135 |
+
return state
|
136 |
+
|
137 |
+
def post_editor(state):
|
138 |
+
current_draft = state['draft_posts'][-1]
|
139 |
+
styleguide = prompts.style_guide_text
|
140 |
+
review_comments = state['review_comments']
|
141 |
+
results = post_editor_chain.invoke({"current_draft": current_draft, "styleguide": styleguide, "review_comments": review_comments})
|
142 |
+
print(results)
|
143 |
+
state['draft_posts'].append(results)
|
144 |
+
state['workflow'].append("post_editor")
|
145 |
+
print(state['workflow'])
|
146 |
+
return state
|
147 |
+
|
148 |
+
def post_review(state):
|
149 |
+
print("post_review node")
|
150 |
+
current_draft = state['draft_posts'][-1]
|
151 |
+
styleguide = prompts.style_guide_text
|
152 |
+
results = post_review_chain.invoke({"current_draft": current_draft, "styleguide": styleguide})
|
153 |
+
print(results)
|
154 |
+
data = json.loads(results.strip())
|
155 |
+
state['review_comments'] = data["Comments on current draft"]
|
156 |
+
if data["Draft Acceptable"] == 'Yes':
|
157 |
+
state['final_post'] = state['draft_posts'][-1]
|
158 |
+
state['workflow'].append("post_review")
|
159 |
+
print(state['workflow'])
|
160 |
+
return state
|
161 |
+
|
162 |
+
def writing_end(state):
|
163 |
+
print("writing_end node")
|
164 |
+
state['workflow'].append("writing_end")
|
165 |
+
print(state['workflow'])
|
166 |
+
return state
|
167 |
+
|
168 |
+
def writing_supervisor(state):
|
169 |
+
print("writing_supervisor node")
|
170 |
+
message_from_manager = state['message_from_manager']
|
171 |
+
topic = state['topic']
|
172 |
+
drafts = state['draft_posts']
|
173 |
+
final_draft = state['final_post']
|
174 |
+
review_comments = state['review_comments']
|
175 |
+
supervisor_result = writing_supervisor_chain.invoke({"review_comments": review_comments, "message_from_manager": message_from_manager, "topic": topic, "drafts": drafts, "final_draft": final_draft})
|
176 |
+
print(supervisor_result)
|
177 |
+
lines = supervisor_result.split('\n')
|
178 |
+
for line in lines:
|
179 |
+
if line.startswith('Next Action: '):
|
180 |
+
state['next'] = line[len('Next Action: '):].strip() # Extract the next action content
|
181 |
+
elif line.startswith('Message to project manager: '):
|
182 |
+
state['message_to_manager'] = line[len('Message to project manager: '):].strip()
|
183 |
+
state['workflow'].append("writing_supervisor")
|
184 |
+
print(state['workflow'])
|
185 |
+
return state
|
186 |
+
|
187 |
+
#######################################
|
188 |
+
### Overarching Graph Components ###
|
189 |
+
#######################################
|
190 |
+
class State(TypedDict):
|
191 |
+
workflow: List[str]
|
192 |
+
topic: str
|
193 |
+
research_data: Dict[str, str]
|
194 |
+
draft_posts: Sequence[str]
|
195 |
+
final_post: str
|
196 |
+
next: str
|
197 |
+
user_input: str
|
198 |
+
message_to_manager: str
|
199 |
+
message_from_manager: str
|
200 |
+
last_active_team :str
|
201 |
+
next_team: str
|
202 |
+
review_comments: str
|
203 |
+
|
204 |
+
#
|
205 |
+
# Complete Graph Chains
|
206 |
+
#
|
207 |
+
overall_supervisor_chain = (
|
208 |
+
prompts.overall_supervisor_prompt | models.gpt4o | StrOutputParser()
|
209 |
+
)
|
210 |
+
|
211 |
+
#
|
212 |
+
# Complete Graph Node defs
|
213 |
+
#
|
214 |
+
def overall_supervisor(state):
|
215 |
+
init_user_query = state["user_input"]
|
216 |
+
message_to_manager = state['message_to_manager']
|
217 |
+
last_active_team = state['last_active_team']
|
218 |
+
final_post = state['final_post']
|
219 |
+
supervisor_result = overall_supervisor_chain.invoke({"query": init_user_query, "message_to_manager": message_to_manager, "last_active_team": last_active_team, "final_post": final_post})
|
220 |
+
print(supervisor_result)
|
221 |
+
lines = supervisor_result.split('\n')
|
222 |
+
for line in lines:
|
223 |
+
if line.startswith('Next Action: '):
|
224 |
+
state['next_team'] = line[len('Next Action: '):].strip() # Extract the next action content
|
225 |
+
elif line.startswith('Extracted Topic: '):
|
226 |
+
state['topic'] = line[len('Extracted Topic: '):].strip() # Extract the next action content
|
227 |
+
elif line.startswith('Message to supervisor: '):
|
228 |
+
state['message_from_manager'] = line[len('Message to supervisor: '):].strip() # Extract the next action content
|
229 |
+
state['workflow'].append("overall_supervisor")
|
230 |
+
print(state['workflow'])
|
231 |
+
return state
|
232 |
+
|
233 |
+
#######################################
|
234 |
+
### Graph structures ###
|
235 |
+
#######################################
|
236 |
+
|
237 |
+
#
|
238 |
+
# Reserach Graph Nodes
|
239 |
+
#
|
240 |
+
research_graph = StateGraph(ResearchState)
|
241 |
+
research_graph.add_node("query_qdrant", query_qdrant)
|
242 |
+
research_graph.add_node("web_search", web_search)
|
243 |
+
research_graph.add_node("research_supervisor", research_supervisor)
|
244 |
+
research_graph.add_node("research_end", research_end)
|
245 |
+
#
|
246 |
+
# Reserach Graph Edges
|
247 |
+
#
|
248 |
+
research_graph.set_entry_point("research_supervisor")
|
249 |
+
research_graph.add_edge("query_qdrant", "research_supervisor")
|
250 |
+
research_graph.add_edge("web_search", "research_supervisor")
|
251 |
+
research_graph.add_conditional_edges(
|
252 |
+
"research_supervisor",
|
253 |
+
lambda x: x["next"],
|
254 |
+
{"query_qdrant": "query_qdrant", "web_search": "web_search", "FINISH": "research_end"},
|
255 |
+
)
|
256 |
+
research_graph_comp = research_graph.compile()
|
257 |
+
|
258 |
+
#
|
259 |
+
# Writing Graph Nodes
|
260 |
+
#
|
261 |
+
writing_graph = StateGraph(WritingState)
|
262 |
+
writing_graph.add_node("post_creation", post_creation)
|
263 |
+
writing_graph.add_node("post_editor", post_editor)
|
264 |
+
writing_graph.add_node("post_review", post_review)
|
265 |
+
writing_graph.add_node("writing_supervisor", writing_supervisor)
|
266 |
+
writing_graph.add_node("writing_end", writing_end)
|
267 |
+
#
|
268 |
+
# Writing Graph Edges
|
269 |
+
#
|
270 |
+
writing_graph.set_entry_point("writing_supervisor")
|
271 |
+
writing_graph.add_edge("post_creation", "post_editor")
|
272 |
+
writing_graph.add_edge("post_editor", "post_review")
|
273 |
+
writing_graph.add_edge("post_review", "writing_supervisor")
|
274 |
+
writing_graph.add_conditional_edges(
|
275 |
+
"writing_supervisor",
|
276 |
+
lambda x: x["next"],
|
277 |
+
{"NEW DRAFT": "post_creation",
|
278 |
+
"FINISH": "writing_end"},
|
279 |
+
)
|
280 |
+
writing_graph_comp = writing_graph.compile()
|
281 |
+
|
282 |
+
#
|
283 |
+
# Complete Graph Nodes
|
284 |
+
#
|
285 |
+
overall_graph = StateGraph(State)
|
286 |
+
overall_graph.add_node("overall_supervisor", overall_supervisor)
|
287 |
+
overall_graph.add_node("research_team_graph", research_graph_comp)
|
288 |
+
overall_graph.add_node("writing_team_graph", writing_graph_comp)
|
289 |
+
#
|
290 |
+
# Complete Graph Edges
|
291 |
+
#
|
292 |
+
overall_graph.set_entry_point("overall_supervisor")
|
293 |
+
overall_graph.add_edge("research_team_graph", "overall_supervisor")
|
294 |
+
overall_graph.add_edge("writing_team_graph", "overall_supervisor")
|
295 |
+
overall_graph.add_conditional_edges(
|
296 |
+
"overall_supervisor",
|
297 |
+
lambda x: x["next_team"],
|
298 |
+
{"research_team": "research_team_graph",
|
299 |
+
"writing_team": "writing_team_graph",
|
300 |
+
"FINISH": END},
|
301 |
+
)
|
302 |
+
app = overall_graph.compile()
|
303 |
+
|
304 |
+
|
305 |
+
#######################################
|
306 |
+
### Run method ###
|
307 |
+
#######################################
|
308 |
+
|
309 |
+
def getSocialMediaPost(userInput: str) -> str:
|
310 |
+
finalPost = ""
|
311 |
+
initial_state = State(
|
312 |
+
workflow = [],
|
313 |
+
topic= "",
|
314 |
+
research_data = {},
|
315 |
+
draft_posts = [],
|
316 |
+
final_post = [],
|
317 |
+
next = [],
|
318 |
+
next_team = [],
|
319 |
+
user_input=userInput,
|
320 |
+
message_to_manager="",
|
321 |
+
message_from_manager="",
|
322 |
+
last_active_team="",
|
323 |
+
review_comments=""
|
324 |
+
)
|
325 |
+
results = app.invoke(initial_state, {"recursion_limit": 40})
|
326 |
+
try:
|
327 |
+
results = app.invoke(initial_state, {"recursion_limit": 40})
|
328 |
+
except GraphRecursionError:
|
329 |
+
return "Recursion Error"
|
330 |
+
finalPost = results['final_post']
|
331 |
return finalPost
|