import chainlit as cl from helper_functions import process_file, load_documents_from_url, add_to_qdrant import models import agents @cl.on_chat_start async def on_chat_start(): global qdrant_store qdrant_store = models.semantic_tuned_Qdrant_vs global retrieval_augmented_qa_chain retrieval_augmented_qa_chain = agents.simple_rag_chain res = await ask_action() await handle_response(res) @cl.author_rename def rename(orig_author: str): return "AI Assistant" @cl.on_message async def main(message: cl.Message): await cl.Message( content=f"Received: {message.content}", ).send() if message.content.startswith("http://") or message.content.startswith("https://"): message_type = "url" else: message_type = "question" if message_type == "url": # load the file docs = load_documents_from_url(message.content) cl.Message("loaded docs").send() splits = models.semanticChunker_tuned.split_documents(docs) cl.Message("split docs").send() for i, doc in enumerate(splits): doc.metadata["user_upload_source"] = f"source_{i}" print(f"Processing {len(docs)} text chunks") # Add to the qdrant_store qdrant_store.add_documents( documents=splits ) await cl.Message(f"Processing `{response.url}` done. You can now ask questions!").send() else: response = retrieval_augmented_qa_chain.invoke({"question": message.content}) await cl.Message(content=response.content).send() res = await ask_action() await handle_response(res) ## Chainlit helper functions async def ask_action(): res = await cl.AskActionMessage( content="Pick an action!", actions=[ cl.Action(name="Question", value="question", label="Ask a question"), cl.Action(name="File", value="file", label="Upload a file"), cl.Action(name="Url", value="url", label="Upload a URL"), ], ).send() return res async def handle_response(res): if res and res.get("value") == "file": files = None files = await cl.AskFileMessage( content="Please upload a Text or PDF file to begin!", accept=["text/plain", "application/pdf"], max_size_mb=12, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() # load the file docs = process_file(file) splits = models.semanticChunker_tuned.split_documents(docs) for i, doc in enumerate(splits): doc.metadata["user_upload_source"] = f"source_{i}" print(f"Processing {len(docs)} text chunks") # Add to the qdrant_store qdrant_store.add_documents( documents=splits ) msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() if res and res.get("value") == "url": await cl.Message(content="Submit a url link in the message box below.").send() if res and res.get("value") == "question": await cl.Message(content="Ask away!").send()