import chainlit as cl from helper_functions import process_file, load_documents_from_url import models import agents import graph import asyncio @cl.on_chat_start async def on_chat_start(): global qdrant_store qdrant_store = models.semantic_tuned_Qdrant_vs global retrieval_augmented_qa_chain retrieval_augmented_qa_chain = agents.simple_rag_chain res = await ask_action() await handle_response(res) @cl.author_rename def rename(orig_author: str): return "AI Assistant" @cl.on_message async def main(message: cl.Message): # await cl.Message(f"Processing `{message.content}`", disable_human_feedback=True) if message.content.startswith("http://") or message.content.startswith("https://"): message_type = "url" else: message_type = "question" if message_type == "url": await cl.Message(content=f"Processing `{message.content}`", disable_human_feedback=True).send() try: # Run the document loading and splitting in a thread docs = await asyncio.to_thread(load_documents_from_url, message.content) await cl.Message(content="loaded docs").send() splits = await asyncio.to_thread(models.semanticChunker_tuned.split_documents, docs) await cl.Message(content="split docs").send() for i, doc in enumerate(splits): doc.metadata["user_upload_source"] = f"source_{i}" print(f"Processing {len(docs)} text chunks") # Add to the qdrant_store asynchronously await asyncio.to_thread(qdrant_store.add_documents, splits) await cl.Message(f"Processing `{message.content}` done. You can now ask questions!").send() except Exception as e: await cl.Message(f"Error processing the document: {e}").send() res = await ask_action() await handle_response(res) else: # Handle the question as usual await cl.Message(content="Our specialist is working...", disable_human_feedback=True).send() #response = await asyncio.to_thread(retrieval_augmented_qa_chain.invoke, {"question": message.content}) response = await asyncio.to_thread(graph.getSocialMediaPost, message.content) print(response) await cl.Message(content=response).send() res = await ask_action() await handle_response(res) ## Chainlit helper functions async def ask_action(): res = await cl.AskActionMessage( content="Pick an action!", actions=[ cl.Action(name="Question", value="question", label="Create a post"), cl.Action(name="File", value="file", label="Import a file"), cl.Action(name="Url", value="url", label="Import a Webpage"), ], ).send() return res async def handle_response(res): if res and res.get("value") == "file": files = None files = await cl.AskFileMessage( content="Please upload a Text or PDF file to begin!", accept=["text/plain", "application/pdf"], max_size_mb=12, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() # load the file docs = await asyncio.to_thread(process_file, file) await cl.Message(content="loaded docs").send() splits = await asyncio.to_thread(models.semanticChunker_tuned.split_documents, docs) await cl.Message(content="split docs").send() for i, doc in enumerate(splits): doc.metadata["user_upload_source"] = f"source_{i}" print(f"Processing {len(docs)} text chunks") # Add to the qdrant_store await asyncio.to_thread(qdrant_store.add_documents, splits) await cl.Message(content="added to vs").send() await cl.Message(content=f"Processing `{file.name}` done.").send() res = await ask_action() await handle_response(res) if res and res.get("value") == "url": await cl.Message(content="Submit a url link in the message box below.").send() if res and res.get("value") == "question": await cl.Message(content="Give us your idea!").send()