Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# Load the model and tokenizer | |
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction") | |
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction") | |
def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p): | |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt") | |
if max_new_tokens > 0: | |
outputs = model.generate( | |
inputs, | |
max_length=max_length, | |
max_new_tokens=max_new_tokens, | |
min_length=min_length, | |
num_beams=num_beams, | |
temperature=temperature, | |
top_p=top_p, | |
early_stopping=True | |
) | |
else: | |
outputs = model.generate( | |
inputs, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
temperature=temperature, | |
top_p=top_p, | |
early_stopping=True | |
) | |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return corrected_text | |
def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p): | |
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p) | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"), | |
gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"), | |
gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"), | |
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |