ColeGuion's picture
Update app.py
100aaa7 verified
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load the model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p):
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
if max_new_tokens > 0:
outputs = model.generate(
inputs,
max_length=max_length,
max_new_tokens=max_new_tokens,
min_length=min_length,
num_beams=num_beams,
temperature=temperature,
top_p=top_p,
early_stopping=True
)
else:
outputs = model.generate(
inputs,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
temperature=temperature,
top_p=top_p,
early_stopping=True
)
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected_text
def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"),
gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"),
gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"),
gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()