Spaces:
Runtime error
Runtime error
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
import gradio as gr | |
import pandas as pd | |
from datasets import load_dataset | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
# Load dataset | |
dataset = load_dataset("Cosmos-AI/Cosmos-dataset") | |
# Convert dataset to pandas DataFrame | |
dataset_df = pd.DataFrame(dataset['train']) # Assuming 'train' split contains both questions and answers | |
# Prepare data | |
questions = dataset_df['Question'].astype(str).tolist() | |
answers = dataset_df['Answer'].astype(str).tolist() | |
# Load tokenizer | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts(questions + answers) | |
word_index = tokenizer.word_index | |
# Load trained model | |
model = load_model("conversation_model.h5") | |
# Function to generate response | |
def generate_response(input_text): | |
# Tokenize input text | |
input_sequence = tokenizer.texts_to_sequences([input_text]) | |
input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length, padding='post') | |
# Generate response | |
predicted_sequence = model.predict(input_sequence) | |
# Decode predicted sequence | |
response = "" | |
for timestep in predicted_sequence[0]: | |
predicted_word_index = np.argmax(timestep) | |
if predicted_word_index in word_index.values(): | |
predicted_word = next(word for word, idx in word_index.items() if idx == predicted_word_index) | |
if predicted_word == 'eos': # 'eos' marks the end of the sequence | |
break | |
response += predicted_word + " " | |
else: | |
response += ' ' # If predicted index not found in word_index | |
return response.strip() | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="Conversation Model", | |
description="Enter your message and get a response from the conversational model." | |
) | |
# Launch the interface | |
iface.launch() | |