Spaces:
Runtime error
Runtime error
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
from datasets import load_dataset | |
import pandas as pd | |
import numpy as np | |
from tensorflow.keras.models import Sequential, load_model | |
from tensorflow.keras.layers import Embedding, LSTM, Dense | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.losses import sparse_categorical_crossentropy | |
import gradio as gr | |
# Load dataset | |
dataset = load_dataset("Cosmos-AI/Cosmos-dataset") | |
# Convert dataset to pandas DataFrame | |
dataset_df = pd.DataFrame(dataset['train']) # Assuming 'train' split contains both questions and answers | |
# Prepare data | |
questions = dataset_df['Question'].astype(str).tolist() | |
answers = dataset_df['Answer'].astype(str).tolist() | |
# Tokenize input data | |
tokenizer = Tokenizer(lower=False, oov_token="<unk>", filters='\t\n') | |
tokenizer.fit_on_texts(questions + answers) | |
word_index = tokenizer.word_index | |
# Convert text sequences to numerical sequences | |
question_sequences = tokenizer.texts_to_sequences(questions) | |
answer_sequences = tokenizer.texts_to_sequences(answers) | |
# Pad sequences to ensure uniform length | |
max_sequence_length = max(len(seq) for seq in question_sequences + answer_sequences) | |
print("MAX SEQUENCE LENGTH: " + str(max_sequence_length)) | |
question_sequences = pad_sequences(question_sequences, maxlen=max_sequence_length, padding='post') | |
answer_sequences = pad_sequences(answer_sequences, maxlen=max_sequence_length, padding='post') | |
# Convert target sequences to one-hot encoding | |
num_words = len(word_index) + 1 | |
one_hot_answers = np.zeros((len(answer_sequences), max_sequence_length, num_words), dtype=np.float32) | |
for i, sequence in enumerate(answer_sequences): | |
for t, index in enumerate(sequence): | |
one_hot_answers[i, t, index] = 1 | |
# Define model | |
model = Sequential([ | |
Embedding(len(word_index) + 1, 64), # Removed input_length parameter | |
LSTM(64, return_sequences=True), | |
Dense(len(word_index) + 1, activation='softmax') | |
]) | |
# Compile model with correct loss function | |
model.compile(loss=sparse_categorical_crossentropy, optimizer='adam', metrics=['accuracy']) | |
# Train model | |
model.fit(question_sequences, answer_sequences, epochs=1000, batch_size=32, steps_per_epoch=2) | |
# Function to generate response | |
def generate_response(input_text): | |
# Tokenize input text | |
input_sequence = tokenizer.texts_to_sequences([input_text]) | |
input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length, padding='post') | |
# Generate response | |
predicted_sequence = model.predict(input_sequence) | |
# Decode predicted sequence | |
response = "" | |
for timestep in predicted_sequence[0]: | |
predicted_word_index = np.argmax(timestep) | |
if predicted_word_index in word_index.values(): | |
predicted_word = next(word for word, idx in word_index.items() if idx == predicted_word_index) | |
if predicted_word == 'eos': # 'eos' marks the end of the sequence | |
break | |
response += predicted_word + " " | |
else: | |
response += ' ' # If predicted index not found in word_index | |
return response.strip() | |
# Interface | |
iface = gr.Interface(fn=generate_response, inputs="textbox", outputs="textbox", title="Cosmos AI - A conversational model",) | |
iface.launch() | |