Update Voice_Distinction.py
Browse files- Voice_Distinction.py +100 -100
Voice_Distinction.py
CHANGED
@@ -1,100 +1,100 @@
|
|
1 |
-
# type: ignore
|
2 |
-
|
3 |
-
# Importing the required libraries
|
4 |
-
import io
|
5 |
-
import streamlit as st
|
6 |
-
import numpy as np
|
7 |
-
import librosa
|
8 |
-
from tensorflow.keras.models import Sequential
|
9 |
-
from tensorflow.keras.layers import Dense, Dropout
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
from scipy.io.wavfile import write, read as wav_read
|
12 |
-
from st_audiorec import st_audiorec
|
13 |
-
|
14 |
-
# Function to convert audio to spectrogram image
|
15 |
-
def audio_to_spectrogram(file_path):
|
16 |
-
y, sr = librosa.load(file_path, sr=22050)
|
17 |
-
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, hop_length=512)
|
18 |
-
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
|
19 |
-
plt.figure(figsize=(4, 4))
|
20 |
-
plt.axis('off')
|
21 |
-
plt.imshow(mel_spec_db, aspect='auto', origin='lower')
|
22 |
-
plt.tight_layout()
|
23 |
-
plt.savefig("spectrogram.png")
|
24 |
-
plt.close()
|
25 |
-
|
26 |
-
# Function to create the gender classification model
|
27 |
-
def create_model(vector_length=128):
|
28 |
-
model = Sequential([
|
29 |
-
Dense(256, input_shape=(vector_length,), activation='relu'),
|
30 |
-
Dropout(0.3),
|
31 |
-
Dense(256, activation='relu'),
|
32 |
-
Dropout(0.3),
|
33 |
-
Dense(128, activation='relu'),
|
34 |
-
Dropout(0.3),
|
35 |
-
Dense(128, activation='relu'),
|
36 |
-
Dropout(0.3),
|
37 |
-
Dense(64, activation='relu'),
|
38 |
-
Dropout(0.3),
|
39 |
-
Dense(1, activation='sigmoid')
|
40 |
-
])
|
41 |
-
model.compile(loss='binary_crossentropy', metrics=['accuracy'], optimizer='adam')
|
42 |
-
model.summary()
|
43 |
-
return model
|
44 |
-
|
45 |
-
# Load the pre-trained model
|
46 |
-
model = create_model()
|
47 |
-
model.load_weights("saved_model.h5")
|
48 |
-
|
49 |
-
# Streamlit app
|
50 |
-
st.title("Voice Gender Detection")
|
51 |
-
st.write("This application detects the gender from recorded voice using a Multilayer Perceptron")
|
52 |
-
|
53 |
-
# Option to upload a file
|
54 |
-
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3'])
|
55 |
-
|
56 |
-
# Function to extract features from audio file
|
57 |
-
def extract_feature(file_name):
|
58 |
-
X, sample_rate = librosa.core.load(file_name)
|
59 |
-
result = np.array([])
|
60 |
-
mel = np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0)
|
61 |
-
result = np.hstack((result, mel))
|
62 |
-
return result
|
63 |
-
|
64 |
-
# Function to classify gender
|
65 |
-
def classify_gender(file_path):
|
66 |
-
features = extract_feature(file_path).reshape(1, -1)
|
67 |
-
male_prob = model.predict(features, verbose=0)[0][0]
|
68 |
-
female_prob = 1 - male_prob
|
69 |
-
gender = "male" if male_prob > female_prob else "female"
|
70 |
-
probability =
|
71 |
-
return gender, probability
|
72 |
-
|
73 |
-
if uploaded_file is not None:
|
74 |
-
with open("uploaded_audio.wav", "wb") as f:
|
75 |
-
f.write(uploaded_file.getbuffer())
|
76 |
-
st.audio(uploaded_file, format='audio/wav')
|
77 |
-
if st.button("Submit"):
|
78 |
-
audio_to_spectrogram("uploaded_audio.wav")
|
79 |
-
st.image("spectrogram.png", caption="Mel Spectrogram of the uploaded audio file", use_column_width="auto", width=200)
|
80 |
-
gender, probability = classify_gender("uploaded_audio.wav")
|
81 |
-
st.write(f"Predicted Gender: {gender}")
|
82 |
-
st.write(f"Probability: {probability}")
|
83 |
-
|
84 |
-
wav_audio_data = st_audiorec()
|
85 |
-
|
86 |
-
if wav_audio_data is not None:
|
87 |
-
# Convert byte string to numpy array
|
88 |
-
wav_io = io.BytesIO(wav_audio_data)
|
89 |
-
sr, audio_data = wav_read(wav_io)
|
90 |
-
|
91 |
-
# Save numpy array to WAV file
|
92 |
-
wav_file_path = "recorded_audio.wav"
|
93 |
-
write(wav_file_path, sr, audio_data)
|
94 |
-
|
95 |
-
st.audio(wav_audio_data, format='audio/wav')
|
96 |
-
audio_to_spectrogram(wav_file_path)
|
97 |
-
st.image("spectrogram.png", caption="Mel Spectrogram of the uploaded audio file", use_column_width="auto", width=200)
|
98 |
-
gender, probability = classify_gender(wav_file_path)
|
99 |
-
st.write(f"Predicted Gender: {gender}")
|
100 |
-
st.write(f"Probability: {probability}")
|
|
|
1 |
+
# type: ignore
|
2 |
+
|
3 |
+
# Importing the required libraries
|
4 |
+
import io
|
5 |
+
import streamlit as st
|
6 |
+
import numpy as np
|
7 |
+
import librosa
|
8 |
+
from tensorflow.keras.models import Sequential
|
9 |
+
from tensorflow.keras.layers import Dense, Dropout
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from scipy.io.wavfile import write, read as wav_read
|
12 |
+
from st_audiorec import st_audiorec
|
13 |
+
|
14 |
+
# Function to convert audio to spectrogram image
|
15 |
+
def audio_to_spectrogram(file_path):
|
16 |
+
y, sr = librosa.load(file_path, sr=22050)
|
17 |
+
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, hop_length=512)
|
18 |
+
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
|
19 |
+
plt.figure(figsize=(4, 4))
|
20 |
+
plt.axis('off')
|
21 |
+
plt.imshow(mel_spec_db, aspect='auto', origin='lower')
|
22 |
+
plt.tight_layout()
|
23 |
+
plt.savefig("spectrogram.png")
|
24 |
+
plt.close()
|
25 |
+
|
26 |
+
# Function to create the gender classification model
|
27 |
+
def create_model(vector_length=128):
|
28 |
+
model = Sequential([
|
29 |
+
Dense(256, input_shape=(vector_length,), activation='relu'),
|
30 |
+
Dropout(0.3),
|
31 |
+
Dense(256, activation='relu'),
|
32 |
+
Dropout(0.3),
|
33 |
+
Dense(128, activation='relu'),
|
34 |
+
Dropout(0.3),
|
35 |
+
Dense(128, activation='relu'),
|
36 |
+
Dropout(0.3),
|
37 |
+
Dense(64, activation='relu'),
|
38 |
+
Dropout(0.3),
|
39 |
+
Dense(1, activation='sigmoid')
|
40 |
+
])
|
41 |
+
model.compile(loss='binary_crossentropy', metrics=['accuracy'], optimizer='adam')
|
42 |
+
model.summary()
|
43 |
+
return model
|
44 |
+
|
45 |
+
# Load the pre-trained model
|
46 |
+
model = create_model()
|
47 |
+
model.load_weights("saved_model.h5")
|
48 |
+
|
49 |
+
# Streamlit app
|
50 |
+
st.title("Voice Gender Detection")
|
51 |
+
st.write("This application detects the gender from recorded voice using a Multilayer Perceptron")
|
52 |
+
|
53 |
+
# Option to upload a file
|
54 |
+
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3'])
|
55 |
+
|
56 |
+
# Function to extract features from audio file
|
57 |
+
def extract_feature(file_name):
|
58 |
+
X, sample_rate = librosa.core.load(file_name)
|
59 |
+
result = np.array([])
|
60 |
+
mel = np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0)
|
61 |
+
result = np.hstack((result, mel))
|
62 |
+
return result
|
63 |
+
|
64 |
+
# Function to classify gender
|
65 |
+
def classify_gender(file_path):
|
66 |
+
features = extract_feature(file_path).reshape(1, -1)
|
67 |
+
male_prob = model.predict(features, verbose=0)[0][0]
|
68 |
+
female_prob = 1 - male_prob
|
69 |
+
gender = "male" if male_prob > female_prob else "female"
|
70 |
+
probability = "{:.2f}".format(male_prob) if gender == "male" else "{:.2f}".format(female_prob)
|
71 |
+
return gender, probability
|
72 |
+
|
73 |
+
if uploaded_file is not None:
|
74 |
+
with open("uploaded_audio.wav", "wb") as f:
|
75 |
+
f.write(uploaded_file.getbuffer())
|
76 |
+
st.audio(uploaded_file, format='audio/wav')
|
77 |
+
if st.button("Submit"):
|
78 |
+
audio_to_spectrogram("uploaded_audio.wav")
|
79 |
+
st.image("spectrogram.png", caption="Mel Spectrogram of the uploaded audio file", use_column_width="auto", width=200)
|
80 |
+
gender, probability = classify_gender("uploaded_audio.wav")
|
81 |
+
st.write(f"Predicted Gender: {gender}")
|
82 |
+
st.write(f"Probability: {probability}")
|
83 |
+
|
84 |
+
wav_audio_data = st_audiorec()
|
85 |
+
|
86 |
+
if wav_audio_data is not None:
|
87 |
+
# Convert byte string to numpy array
|
88 |
+
wav_io = io.BytesIO(wav_audio_data)
|
89 |
+
sr, audio_data = wav_read(wav_io)
|
90 |
+
|
91 |
+
# Save numpy array to WAV file
|
92 |
+
wav_file_path = "recorded_audio.wav"
|
93 |
+
write(wav_file_path, sr, audio_data)
|
94 |
+
|
95 |
+
st.audio(wav_audio_data, format='audio/wav')
|
96 |
+
audio_to_spectrogram(wav_file_path)
|
97 |
+
st.image("spectrogram.png", caption="Mel Spectrogram of the uploaded audio file", use_column_width="auto", width=200)
|
98 |
+
gender, probability = classify_gender(wav_file_path)
|
99 |
+
st.write(f"Predicted Gender: {gender}")
|
100 |
+
st.write(f"Probability: {probability}")
|