|
|
|
from typing import Iterator |
|
|
|
|
|
|
|
model_id = 'Cran-May/yugangVI' |
|
|
|
from huggingface_hub import snapshot_download,hf_hub_download |
|
|
|
|
|
snapshot_download(model_id, local_dir="./",revision="b2414a0ceee68fe09c99ace44446cfc9a1c52b08") |
|
hf_hub_download(repo_id="baichuan-inc/Baichuan-13B-Chat",local_dir="./", filename="tokenizer.model") |
|
from llama_cpp import Llama |
|
llm = Llama(model_path="./ggml-model-q4_0.bin", n_ctx=4096,seed=-1) |
|
|
|
def run(message: str, |
|
chat_history: list[tuple[str, str]], |
|
system_prompt: str, |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.3, |
|
top_p: float = 0.85, |
|
top_k: int = 5) -> Iterator[str]: |
|
history = [] |
|
print(chat_history) |
|
result="" |
|
for i in chat_history: |
|
history.append({"role": "user", "content": i[0]}) |
|
history.append({"role": "assistant", "content": i[1]}) |
|
print(history) |
|
history.append({"role": "user", "content": message}) |
|
for response in llm.create_chat_completion(history,stop=["</s>"],stream=True,max_tokens=-1,temperature=temperature,top_k=top_k,top_p=top_p,repeat_penalty=1.1): |
|
if "content" in response["choices"][0]["delta"]: |
|
result = result + response["choices"][0]["delta"]["content"] |
|
yield result |