Spaces:
Runtime error
Runtime error
File size: 4,361 Bytes
9ac31b8 07c1f7a 9ac31b8 3b06696 9ac31b8 3b06696 a9235bb 25d3956 e3d310b 07c1f7a d56d267 9ac31b8 d56d267 9ac31b8 8010ebe 9ac31b8 d56d267 0cd72ee 9ac31b8 25d3956 3b06696 492fffc 3b06696 9ac31b8 d56d267 3b06696 9ac31b8 25d3956 9ac31b8 d56d267 9ac31b8 0cd72ee efa319b 9ac31b8 0cd72ee 3b06696 0cd72ee d56d267 3b06696 d56d267 3b06696 d56d267 ff46702 056eabc 3b06696 25d3956 056eabc 25d3956 056eabc 25d3956 d56d267 056eabc 9ac31b8 954ec97 9ac31b8 d56d267 decf237 ba7dc43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
#import gradio.helpers
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
import uuid
import random
from huggingface_hub import hf_hub_download
#gradio.helpers.CACHED_FOLDER = '/data/cache'
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
pipe.to("cuda")
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
max_64_bit_int = 2**63 - 1
def sample(
image: Image,
seed: Optional[int] = 42,
randomize_seed: bool = True,
motion_bucket_id: int = 127,
fps_id: int = 6,
version: str = "svd_xt",
cond_aug: float = 0.02,
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: str = "outputs",
):
if image.mode == "RGBA":
image = image.convert("RGB")
if(randomize_seed):
seed = random.randint(0, max_64_bit_int)
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
export_to_video(frames, video_path, fps=fps_id)
torch.manual_seed(seed)
return video_path, seed
def resize_image(image, output_size=(1024, 576)):
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
# Resize the image to match the target height, maintaining aspect ratio
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
# Resize the image to match the target width, maintaining aspect ratio
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
# Crop the image
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown('''# AI 视频生成
#### 由单张图片生成一小段视频
''')
with gr.Row():
with gr.Column():
image = gr.Image(label="上传图片", type="pil")
generate_btn = gr.Button("开始生成视频")
video = gr.Video()
with gr.Accordion("高级选项", open=False):
seed = gr.Slider(label="Seed 种子数", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
randomize_seed = gr.Checkbox(label="随机", value=True)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="控制画面运动", value=127, minimum=1, maximum=255)
fps_id = gr.Slider(label="帧率", info="每秒的画面数量", value=6, minimum=5, maximum=30)
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="生成视频")
gr.Examples(
examples=[
"images/girl.png",
"images/panda.png"
],
inputs=image,
outputs=[video, seed],
fn=sample,
cache_examples=True,
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(share=True) |