import gradio as gr import sys from huggingface_hub import ModelCard, HfApi import requests import networkx as nx import matplotlib.pyplot as plt from matplotlib.patches import Patch from collections import defaultdict from networkx.drawing.nx_pydot import graphviz_layout from io import BytesIO from PIL import Image TITLE = """

🌳 Model Family Tree


Automatically calculate the family tree of a given model. It also displays the type of license each model uses (permissive, noncommercial, or unknown).

You can also run the code in this Colab notebook. Special thanks to leonardlin for his caching implementation. See also mrfakename's version in this space.

""" # Define the model ID MODEL_ID = "mlabonne/NeuralBeagle14-7B" # Define a class to cache model cards class CachedModelCard(ModelCard): _cache = {} @classmethod def load(cls, model_id: str, **kwargs) -> "ModelCard": if model_id not in cls._cache: try: print('REQUEST ModelCard:', model_id) cls._cache[model_id] = super().load(model_id, **kwargs) except: cls._cache[model_id] = None else: print('CACHED:', model_id) return cls._cache[model_id] # Function to get model names from a YAML file def get_model_names_from_yaml(url): """Get a list of parent model names from the yaml file.""" model_tags = [] response = requests.get(url) if response.status_code == 200: model_tags.extend([item for item in response.content if '/' in str(item)]) return model_tags # Function to get the color of the model based on its license def get_license_color(model): """Get the color of the model based on its license.""" try: card = CachedModelCard.load(model) license = card.data.to_dict()['license'].lower() # Define permissive licenses permissive_licenses = ['mit', 'bsd', 'apache-2.0', 'openrail'] # Add more as needed # Check license type if any(perm_license in license for perm_license in permissive_licenses): return 'lightgreen' # Permissive licenses else: return 'lightcoral' # Noncommercial or other licenses except Exception as e: print(f"Error retrieving license for {model}: {e}") return 'lightgray' # Function to find model names in the family tree def get_model_names(model, genealogy, found_models=None, visited_models=None): print('---') print(model) if found_models is None: found_models = set() if visited_models is None: visited_models = set() if model in visited_models: print("Model already visited...") return found_models visited_models.add(model) try: card = CachedModelCard.load(model) card_dict = card.data.to_dict() license = card_dict['license'] model_tags = [] if 'base_model' in card_dict: model_tags = card_dict['base_model'] if 'tags' in card_dict and not model_tags: tags = card_dict['tags'] model_tags = [model_name for model_name in tags if '/' in model_name] if not model_tags: model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/merge.yml")) if not model_tags: model_tags.extend(get_model_names_from_yaml(f"https://huggingface.co/{model}/blob/main/mergekit_config.yml")) if not isinstance(model_tags, list): model_tags = [model_tags] if model_tags else [] found_models.add(model) for model_tag in model_tags: genealogy[model_tag].append(model) get_model_names(model_tag, genealogy, found_models, visited_models) except Exception as e: print(f"Could not find model names for {model}: {e}") return found_models def find_root_nodes(G): """ Find all nodes in the graph with no predecessors """ return [n for n, d in G.in_degree() if d == 0] def max_width_of_tree(G): """ Calculate the maximum width of the tree """ max_width = 0 for root in find_root_nodes(G): width_at_depth = calculate_width_at_depth(G, root) local_max_width = max(width_at_depth.values()) max_width = max(max_width, local_max_width) return max_width def calculate_width_at_depth(G, root): """ Calculate width at each depth starting from a given root """ depth_count = defaultdict(int) queue = [(root, 0)] while queue: node, depth = queue.pop(0) depth_count[depth] += 1 for child in G.successors(node): queue.append((child, depth + 1)) return depth_count # Function to create the family tree def create_family_tree(start_model): genealogy = defaultdict(list) get_model_names(start_model, genealogy) # Assuming this populates the genealogy print("Number of models:", len(CachedModelCard._cache)) # Create a directed graph G = nx.DiGraph() # Add nodes and edges to the graph for parent, children in genealogy.items(): for child in children: G.add_edge(parent, child) try: # Get max depth and width max_depth = nx.dag_longest_path_length(G) + 1 max_width = max_width_of_tree(G) + 1 except: # Get max depth and width max_depth = 21 max_width = 9 # Estimate plot size height = max(8, 1.6 * max_depth) width = max(8, 6 * max_width) # Set Graphviz layout attributes for a bottom-up tree plt.figure(figsize=(width, height)) pos = graphviz_layout(G, prog="dot") # Determine node colors based on license node_colors = [get_license_color(node) for node in G.nodes()] # Create a label mapping with line breaks labels = {node: node.replace("/", "\n") for node in G.nodes()} # Draw the graph nx.draw(G, pos, labels=labels, with_labels=True, node_color=node_colors, font_size=12, node_size=8_000, edge_color='black') # Create a legend for the colors legend_elements = [ Patch(facecolor='lightgreen', label='Permissive'), Patch(facecolor='lightcoral', label='Noncommercial'), Patch(facecolor='lightgray', label='Unknown') ] plt.legend(handles=legend_elements, loc='upper left') plt.title(f"{start_model}'s Family Tree", fontsize=20) # Capture the plot as an image in memory img_buffer = BytesIO() plt.savefig(img_buffer, format='png', bbox_inches='tight') plt.close() img_buffer.seek(0) # Open the image using PIL img = Image.open(img_buffer) return img with gr.Blocks() as demo: gr.Markdown(TITLE) model_id = gr.Textbox(label="Model ID", value="mlabonne/NeuralBeagle14-7B") btn = gr.Button("Create tree") out = gr.Image() btn.click(fn=create_family_tree, inputs=model_id, outputs=out) demo.queue(api_open=False).launch(show_api=False) create_family_tree(MODEL_ID)