Spaces:
Running
Running
File size: 15,852 Bytes
863d8a3 e3a17c0 863d8a3 a81bf47 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 264c5ec 789383a d4a7c84 789383a 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 a81bf47 863d8a3 264c5ec 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 a81bf47 863d8a3 264c5ec 863d8a3 a81bf47 863d8a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import requests
import json
import yaml
import scipdf
import os
import time
import aiohttp
import asyncio
import numpy as np
import random
def get_content_between_a_b(start_tag, end_tag, text):
extracted_text = ""
start_index = text.find(start_tag)
while start_index != -1:
end_index = text.find(end_tag, start_index + len(start_tag))
if end_index != -1:
extracted_text += text[start_index + len(start_tag) : end_index] + " "
start_index = text.find(start_tag, end_index + len(end_tag))
else:
break
return extracted_text.strip()
def extract(text, type):
if text:
target_str = get_content_between_a_b(f"<{type}>", f"</{type}>", text)
if target_str:
return target_str
else:
return text
else:
return ""
def download(url):
try:
response = requests.get(url)
if response.status_code == 200:
return response.content
else:
print(f"Failed to download the file from the URL: {url}")
return None
except requests.RequestException as e:
print(f"An error occurred while downloading the file from the URL: {url}")
print(e)
return None
except Exception as e:
print(f"An unexpected error occurred while downloading the file from the URL: {url}")
print(e)
return None
class Result:
def __init__(self,title="",abstract="",article = "",citations_conut = 0,year = None) -> None:
self.title = title
self.abstract = abstract
self.article = article
self.citations_conut = citations_conut
self.year = year
# Define the API endpoint URL
semantic_fields = ["title", "abstract", "year", "authors.name", "authors.paperCount", "authors.citationCount","authors.hIndex","url","referenceCount","citationCount","influentialCitationCount","isOpenAccess","openAccessPdf","fieldsOfStudy","s2FieldsOfStudy","embedding.specter_v1","embedding.specter_v2","publicationDate","citations"]
fieldsOfStudy = ["Computer Science","Medicine","Chemistry","Biology","Materials Science","Physics","Geology","Art","History","Geography","Sociology","Business","Political Science","Philosophy","Art","Literature","Music","Economics","Philosophy","Mathematics","Engineering","Environmental Science","Agricultural and Food Sciences","Education","Law","Linguistics"]
# citations.paperId, citations.title, citations.year, citations.authors.name, citations.authors.paperCount, citations.authors.citationCount, citations.authors.hIndex, citations.url, citations.referenceCount, citations.citationCount, citations.influentialCitationCount, citations.isOpenAccess, citations.openAccessPdf, citations.fieldsOfStudy, citations.s2FieldsOfStudy, citations.publicationDate
# publicationDateOrYear: 2019-03-05 ; 2019-03 ; 2019 ; 2016-03-05:2020-06-06 ; 1981-08-25: ; :2020-06-06 ; 1981:2020
# publicationTypes: Review ; JournalArticle CaseReport ; ClinicalTrial ; Dataset ; Editorial ; LettersAndComments ; MetaAnalysis ; News ; Study ; Book ; BookSection
def process_fields(fields):
return ",".join(fields)
class SementicSearcher:
def __init__(self, ban_paper = []) -> None:
self.ban_paper = ban_paper
def search_papers(self, query, limit=5, offset=0, fields=["title", "paperId", "abstract", "isOpenAccess", 'openAccessPdf', "year","publicationDate","citations.title","citations.abstract","citations.isOpenAccess","citations.openAccessPdf","citations.citationCount","citationCount","citations.year"],
publicationDate=None, minCitationCount=0, year=None,
publicationTypes=None, fieldsOfStudy=None):
url = 'https://api.semanticscholar.org/graph/v1/paper/search'
fields = process_fields(fields) if isinstance(fields, list) else fields
# More specific query parameter
query_params = {
'query': query,
"limit": limit,
"offset": offset,
'fields': fields,
'publicationDateOrYear': publicationDate,
'minCitationCount': minCitationCount,
'year': year,
'publicationTypes': publicationTypes,
'fieldsOfStudy': fieldsOfStudy
}
# Load the API key from the configuration file
api_key = os.environ.get('SEMENTIC_SEARCH_API_KEY',None)
headers = {'x-api-key': api_key} if api_key else None
try:
filtered_query_params = {key: value for key, value in query_params.items() if value is not None}
response = requests.get(url, params=filtered_query_params, headers=headers)
if response.status_code == 200:
response_data = response.json()
return response_data
elif response.status_code == 429:
time.sleep(1)
print(f"Request failed with status code {response.status_code}: begin to retry")
return self.search_papers(query, limit, offset, fields, publicationDate, minCitationCount, year, publicationTypes, fieldsOfStudy)
else:
print(f"Request failed with status code {response.status_code}: {response.text}")
return None
except requests.RequestException as e:
print(f"An error occurred: {e}")
return None
def cal_cosine_similarity(self, vec1, vec2):
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
def cal_cosine_similarity_matric(self,matric1, matric2):
if isinstance(matric1, list):
matric1 = np.array(matric1)
if isinstance(matric2, list):
matric2 = np.array(matric2)
if len(matric1.shape) == 1:
matric1 = matric1.reshape(1, -1)
if len(matric2.shape) == 1:
matric2 = matric2.reshape(1, -1)
dot_product = np.dot(matric1, matric2.T)
norm1 = np.linalg.norm(matric1, axis=1)
norm2 = np.linalg.norm(matric2, axis=1)
cos_sim = dot_product / np.outer(norm1, norm2)
scores = cos_sim.flatten()
return scores.tolist()
def read_arxiv_from_path(self, pdf_path):
def is_pdf(binary_data):
pdf_header = b'%PDF-'
return binary_data.startswith(pdf_header)
try:
flag = is_pdf(pdf_path)
if not flag:
return None
except Exception as e:
pass
try:
article_dict = scipdf.parse_pdf_to_dict(pdf_path)
except Exception as e:
print(f"Failed to parse the PDF")
return None
return article_dict
def get_paper_embbeding_and_score(self,query_embedding, paper,llm):
paper_content = f"""
Title: {paper['title']}
Abstract: {paper['abstract']}
"""
paper_embbeding = llm.get_embbeding(paper_content)
paper_embbeding = np.array(paper_embbeding)
score = self.cal_cosine_similarity(query_embedding,paper_embbeding)
return [paper,score]
def rerank_papers(self, query_embedding, paper_list,llm):
if len(paper_list) == 0:
return []
paper_list = [paper for paper in paper_list if paper]
if len(paper_list) >= 50:
paper_list = random.sample(paper_list,50)
paper_contents = []
for paper in paper_list:
paper_content = f"""
Title: {paper['title']}
Abstract: {paper['abstract']}
"""
paper_contents.append(paper_content)
paper_contents_embbeding = llm.get_embbeding(paper_contents)
paper_contents_embbeding = np.array(paper_contents_embbeding)
scores = self.cal_cosine_similarity_matric(query_embedding,paper_contents_embbeding)
# 根据score对paper_list进行排序
paper_list = sorted(zip(paper_list,scores),key = lambda x: x[1],reverse = True)
paper_list = [paper[0] for paper in paper_list]
return paper_list
def search(self,query,max_results = 5 ,paper_list = None ,rerank_query = None,llm = None,year = None,publicationDate = None,need_download = True,fields = ["title", "paperId", "abstract", "isOpenAccess", 'openAccessPdf', "year","publicationDate","citationCount"]):
if rerank_query:
rerank_query_embbeding = llm.get_embbeding(rerank_query)
rerank_query_embbeding = np.array(rerank_query_embbeding)
readed_papers = []
if paper_list:
if isinstance(paper_list,set):
paper_list = list(paper_list)
if len(paper_list) == 0 :
pass
elif isinstance(paper_list[0], str):
readed_papers = paper_list
elif isinstance(paper_list[0], Result):
readed_papers = [paper.title for paper in paper_list]
print(f"Searching for papers related to the query: <{query}>")
results = self.search_papers(query,limit = 10 * max_results,year=year,publicationDate = publicationDate,fields = fields)
if not results or "data" not in results:
return []
new_results = []
for result in results['data']:
if result['title'] in self.ban_paper:
continue
new_results.append(result)
results = new_results
final_results = []
if need_download:
paper_candidates = []
for result in results:
if not result['isOpenAccess'] or not result['openAccessPdf'] or result['title'] in readed_papers:
continue
else:
paper_candidates.append(result)
else:
paper_candidates = results
if llm and rerank_query:
paper_candidates = self.rerank_papers(rerank_query_embbeding, paper_candidates,llm)
if need_download:
for result in paper_candidates:
pdf_link = result['openAccessPdf']["url"]
try:
content = self.download_pdf(pdf_link)
if not content:
continue
except Exception as e:
continue
title = result['title']
abstract = result['abstract']
citationCount = result['citationCount']
year = result['year']
article = self.read_arxiv_from_path(content)
if not article:
continue
final_results.append(Result(title,abstract,article,citationCount,year))
if len(final_results) >= max_results:
break
else:
for result in paper_candidates:
title = result['title']
abstract = result['abstract']
citationCount = result['citationCount']
year = result['year']
final_results.append(Result(title,abstract,None,citationCount,year))
if len(final_results) >= max_results:
break
return final_results
def search_related_paper(self,title,need_citation = True,need_reference = True,rerank_query = None,llm = None,paper_list = []):
print(f"Searching for the related papers of <{title}>, need_citation: {need_citation}, need_reference: {need_reference}")
fileds = ["title","abstract","citations.title","citations.abstract","citations.citationCount","references.title","references.abstract","references.citationCount","citations.isOpenAccess","citations.openAccessPdf","references.isOpenAccess","references.openAccessPdf","citations.year","references.year"]
results = self.search_papers(title,limit = 3,fields=fileds)
related_papers = []
related_papers_title = []
if not results or "data" not in results:
return None
for result in results["data"]:
if not result:
continue
if need_citation:
for citation in result["citations"]:
if "openAccessPdf" not in citation or not citation["openAccessPdf"]:
continue
elif citation["title"] in related_papers_title or citation["title"] in self.ban_paper or citation["title"] in paper_list:
continue
elif citation["isOpenAccess"] == False or citation["openAccessPdf"] == None:
continue
else:
related_papers.append(citation)
related_papers_title.append(citation["title"])
if need_reference:
for reference in result["references"]:
if "openAccessPdf" not in reference or not reference["openAccessPdf"]:
continue
elif reference["title"] in related_papers_title or reference["title"] in self.ban_paper or reference["title"] in paper_list:
continue
elif reference["isOpenAccess"] == False or reference["openAccessPdf"] == None:
continue
else:
related_papers.append(reference)
related_papers_title.append(reference["title"])
if result:
break
if len(related_papers) >= 200:
related_papers = related_papers[:200]
if rerank_query and llm:
rerank_query_embbeding = llm.get_embbeding(rerank_query)
rerank_query_embbeding = np.array(rerank_query_embbeding)
related_papers = self.rerank_papers(rerank_query_embbeding, related_papers,llm)
related_papers = [[paper["title"],paper["abstract"],paper["openAccessPdf"]["url"],paper["citationCount"],paper['year']] for paper in related_papers]
else:
related_papers = [[paper["title"],paper["abstract"],paper["openAccessPdf"]["url"],paper["citationCount"],paper['year']] for paper in related_papers]
related_papers = sorted(related_papers,key = lambda x: x[3],reverse = True)
print(f"Found {len(related_papers)} related papers")
for paper in related_papers:
url = paper[2]
content = self.download_pdf(url)
if content:
article = self.read_arxiv_from_path(content)
if not article:
continue
result = Result(paper[0],paper[1],article,paper[3],paper[4])
return result
return None
def download_pdf(self, pdf_link):
content = download(pdf_link)
return content
def read_paper_title_abstract(self,article):
title = article["title"]
abstract = article["abstract"]
paper_content = f"""
Title: {title}
Abstract: {abstract}
"""
return paper_content
def read_paper_content(self,article):
paper_content = self.read_paper_title_abstract(article)
for section in article["sections"]:
paper_content += f"section: {section['heading']}\n content: {section['text']}\n ref_ids: {section['publication_ref']}\n"
return paper_content
def read_paper_content_with_ref(self,article):
paper_content = self.read_paper_content(article)
paper_content += "<References>\n"
i = 1
for refer in article["references"]:
ref_id = refer["ref_id"]
title = refer["title"]
year = refer["year"]
paper_content += f"Ref_id:{ref_id} Title: {title} Year: ({year})\n"
i += 1
paper_content += "</References>\n"
return paper_content
|