Spaces:
Running
Running
File size: 14,526 Bytes
863d8a3 a8a4f77 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 e3a17c0 863d8a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import json
import time
from searcher import Result,SementicSearcher
from LLM import openai_llm
from prompts import *
from utils import extract
def get_llm(model = "gpt4o-0513"):
return openai_llm(model)
def get_llms():
main_llm = get_llm("gpt-4o-2024-08-06")
cheap_llm = get_llm("gpt-4o-mini")
return main_llm,cheap_llm
def judge_idea(i,j,idea0,idea1,topic,llm):
prompt = get_judge_idea_all_prompt(idea0,idea1,topic)
messages = [{"role":"user","content":prompt}]
response = llm.response(messages)
novelty = extract(response,"novelty")
relevance = extract(response,"relevance")
significance = extract(response,"significance")
clarity = extract(response,"clarity")
feasibility = extract(response,"feasibility")
effectiveness = extract(response,"effectiveness")
return i,j,novelty,relevance,significance,clarity,feasibility,effectiveness
class DeepResearchAgent:
def __init__(self,llm = None,cheap_llm=None,publicationData = None,ban_paper = [],**kwargs) -> None:
self.reader = SementicSearcher(ban_paper = ban_paper)
self.begin_time = time.time()
self.llm = llm
self.cheap_llm = cheap_llm
self.read_papers = set()
self.paper_storage = []
self.paper_info_for_refine_experiment = []
self.search_qeuries = []
self.deep_research_chains = []
self.deep_ideas = []
self.check_novel_results = []
self.score_results = []
self.topic =None
self.publicationData = publicationData
self.improve_cnt = kwargs.get("improve_cnt",1)
self.max_chain_length = kwargs.get("max_chain_length",5)
self.min_chain_length = kwargs.get("min_chain_length",3)
self.max_chain_numbers = kwargs.get("max_chain_numbers",10)
def wrap_messages(self,prompt):
return [{"role":"user","content":prompt}]
def get_openai_response(self,messages):
return self.llm.response(messages)
def get_cheap_openai_response(self,messages):
return self.cheap_llm.response(messages,max_tokens = 16000)
def get_search_query(self,topic = None,query=None):
prompt = get_deep_search_query_prompt(topic,query)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
search_query = extract(response,"queries")
try:
search_query = json.loads(search_query)
self.search_qeuries.append({"query":query,"search_query":search_query})
except:
search_query = [query]
return search_query
def generate_idea_with_chain(self,topic):
self.topic = topic
print(f"begin to generate search query for {topic}")
search_query = self.get_search_query(topic=topic)
papers = []
for query in search_query:
failed_query = []
current_papers = []
cnt = 0
while len(current_papers) == 0 and cnt < 10:
paper = self.reader.search(query,1,paper_list=self.read_papers,llm=self.llm,rerank_query=f"{topic}",publicationDate=self.publicationData)
if paper and len(paper) > 0 and paper[0]:
self.read_papers.add(paper[0].title)
current_papers.append(paper[0])
else:
failed_query.append(query)
prompt = get_deep_rewrite_query_prompt(failed_query,topic)
messages = self.wrap_messages(prompt)
new_query = self.get_openai_response(messages)
new_query = extract(new_query,"query")
print(f"Failed to search papers for {query}, regenerating query {new_query} to search papers.")
query = new_query
cnt += 1
papers.extend(current_papers)
if len(papers) >= self.max_chain_numbers:
break
if len(papers) == 0:
print(f"failed to generate idea {topic}")
return None,None,None,None,None,None,None,None,None
idea,idea_chain,experiment,entities,trend,future,human,year = self.deep_research_paper_with_chain(papers[0])
print(f"successfully generated idea")
return idea,experiment,entities,idea_chain,idea,trend,future,human,year
def get_paper_idea_experiment_references_info(self,paper):
article = paper.article
if not article:
return None
paper_content = self.reader.read_paper_content(article)
prompt = get_deep_reference_prompt(paper_content,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_cheap_openai_response(messages)
entities = extract(response,"entities")
idea = extract(response,"idea")
experiment = extract(response,"experiment")
references = extract(response,"references")
return idea,experiment,entities,references,paper.title
def get_article_idea_experiment_references_info(self,article):
paper_content = self.reader.read_paper_content_with_ref(article)
prompt = get_deep_reference_prompt(paper_content,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_cheap_openai_response(messages)
entities = extract(response,"entities")
idea = extract(response,"idea")
experiment = extract(response,"experiment")
references = extract(response,"references")
return idea,experiment,entities,references
def deep_research_paper_with_chain(self,paper:Result):
print(f"begin to deep research paper {paper.title}")
article = paper.article
if not article:
print(f"failed to deep research paper {paper.title}")
return None
idea_chain = []
idea_papers = []
experiments = []
total_entities = []
years = []
idea,experiment,entities,references = self.get_article_idea_experiment_references_info(article)
try:
references = json.loads(references)
except:
references = []
total_entities.append(entities)
idea_chain.append(idea)
idea_papers.append(paper.title)
experiments.append(experiment)
years.append(paper.year)
current_title = paper.title
current_abstract = paper.abstract
# search before
while len(idea_chain)<self.max_chain_length:
rerank_query = f"{self.topic} {current_title} {current_abstract}"
citation_paper = self.reader.search_related_paper(current_title,need_reference=False,rerank_query=rerank_query,llm=self.llm,paper_list=idea_papers)
if not citation_paper:
print(f"failed to find citation paper for {current_title}")
break
title = citation_paper.title
abstract = citation_paper.abstract
prompt = get_deep_judge_relevant_prompt(current_title,current_abstract,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
relevant = extract(response,"relevant")
if relevant != "0":
result = self.get_paper_idea_experiment_references_info(citation_paper)
if not result:
break
idea,experiment,entities,_,_ = result
idea_chain.append(idea)
experiments.append(experiment)
total_entities.append(entities)
idea_papers.append(citation_paper.title)
years.append(citation_paper.year)
current_title = citation_paper.title
current_abstract = citation_paper.abstract
else:
print(f"the paper {title} is not relevant")
break
current_title = paper.title
current_abstract = paper.abstract
# search after
while len(idea_chain) < self.max_chain_length and len(references) > 0:
search_paper = []
article = None
print(f"The references find:{references}")
while len(references) > 0 and len(search_paper) == 0:
reference = references[0]
references.pop(0)
if reference in self.read_papers:
continue
search_paper = self.reader.search(reference,3,llm=self.llm,publicationDate=self.publicationData,paper_list= idea_papers)
if len(search_paper) > 0:
s_p = search_paper[0]
if s_p and s_p.title not in self.read_papers:
prompt = get_deep_judge_relevant_prompt(current_title,current_abstract,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
relevant = extract(response,"relevant")
if relevant != "0" or len(idea_chain) < self.min_chain_length:
article = s_p.article
if article:
cite_paper = s_p
break
else:
print(f"the paper {s_p.title} is not relevant")
search_paper = []
if not article:
rerank_query = f"topic: {self.topic} Title: {current_title} Abstract: {current_abstract}"
search_paper = self.reader.search_related_paper(current_title,need_citation=False,rerank_query = rerank_query,llm=self.llm,paper_list=idea_papers)
if not search_paper:
print(f"failed to find citation paper for {current_title}")
continue
s_p = search_paper
if len(idea_chain) < self.min_chain_length:
article = s_p.article
if not article:
continue
else:
cite_paper = s_p
break
else:
if s_p and s_p.title not in self.read_papers:
prompt = get_deep_judge_relevant_prompt(current_title,current_abstract,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
relevant = extract(response,"relevant")
if relevant == "1" or len(idea_chain) < self.min_chain_length:
article = s_p.article
if not article:
continue
else:
cite_paper = s_p
break
if not article:
print(f"failed to find citation paper for {current_title}")
continue
print("find the citation paper, begin to deep research")
paper_content = self.reader.read_paper_content_with_ref(article)
prompt = get_deep_reference_prompt(paper_content,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_cheap_openai_response(messages)
idea = extract(response,"idea")
references = extract(response,"references")
experiment = extract(response,"experiment")
entities = extract(response,"entities")
try:
references = json.loads(references)
except:
references = []
current_title = cite_paper.title
current_abstract = cite_paper.abstract
years = [cite_paper.year] + years
idea_chain = [idea] + idea_chain
idea_papers = [cite_paper.title] + idea_papers
experiments = [experiment] + experiments
total_entities = [entities] + total_entities
if len(idea_chain) >= self.min_chain_length:
if cite_paper.citations_conut > 1000:
break
print("successfully generate idea chain")
idea_chains = ""
for i,idea,title in zip(range(len(idea_chain)),idea_chain,idea_papers):
idea_chains += f"{i}.Paper:{title} idea:{idea}\n \n"
prompt = get_deep_trend_idea_chains_prompt(idea_chains,entities,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
trend = extract(response,"trend")
self.deep_research_chains.append({"idea_chains":idea_chains,"trend":trend,"topic":self.topic,"ideas":idea_chain,"experiments":experiments,"entities":total_entities,"years":years})
prompt = f"""The current research topic is: {self.topic}. Please help me summarize and refine the following entities by merging, simplifying, or deleting them : {total_entities}
Please output strictly in the following format:
<entities> {{cleaned entities}}</entities>
"""
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
total_entities = extract(response,"entities")
bad_case = []
prompt = get_deep_generate_future_direciton_prompt(idea_chain,trend,self.topic,total_entities)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
future = extract(response,"future")
human = extract(response,"human")
prompt = get_deep_generate_idea_prompt(idea_chains,trend,self.topic,total_entities,future,bad_case)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
method = extract(response,"method")
novelty = extract(response,"novelty")
motivation = extract(response,"motivation")
idea = {"motivation":motivation,"novelty":novelty,"method":method}
prompt = get_deep_final_idea_prompt(idea_chains,trend,idea,self.topic)
messages = self.wrap_messages(prompt)
response = self.get_openai_response(messages)
final_idea = extract(response,"final_idea")
idea = final_idea
self.deep_ideas.append(idea)
print(f"successfully deep research paper {paper.title}")
return idea,idea_chains,trend,experiments,total_entities,future,human,years
if __name__ == "__main__":
reader = SementicSearcher()
|