import requests import json import yaml import scipdf import os import time import aiohttp import asyncio import numpy as np import random def get_content_between_a_b(start_tag, end_tag, text): extracted_text = "" start_index = text.find(start_tag) while start_index != -1: end_index = text.find(end_tag, start_index + len(start_tag)) if end_index != -1: extracted_text += text[start_index + len(start_tag) : end_index] + " " start_index = text.find(start_tag, end_index + len(end_tag)) else: break return extracted_text.strip() def extract(text, type): if text: target_str = get_content_between_a_b(f"<{type}>", f"", text) if target_str: return target_str else: return text else: return "" def download(url): try: response = requests.get(url) if response.status_code == 200: return response.content else: print(f"Failed to download the file from the URL: {url}") return None except requests.RequestException as e: print(f"An error occurred while downloading the file from the URL: {url}") print(e) return None except Exception as e: print(f"An unexpected error occurred while downloading the file from the URL: {url}") print(e) return None class Result: def __init__(self,title="",abstract="",article = "",citations_conut = 0,year = None) -> None: self.title = title self.abstract = abstract self.article = article self.citations_conut = citations_conut self.year = year # Define the API endpoint URL semantic_fields = ["title", "abstract", "year", "authors.name", "authors.paperCount", "authors.citationCount","authors.hIndex","url","referenceCount","citationCount","influentialCitationCount","isOpenAccess","openAccessPdf","fieldsOfStudy","s2FieldsOfStudy","embedding.specter_v1","embedding.specter_v2","publicationDate","citations"] fieldsOfStudy = ["Computer Science","Medicine","Chemistry","Biology","Materials Science","Physics","Geology","Art","History","Geography","Sociology","Business","Political Science","Philosophy","Art","Literature","Music","Economics","Philosophy","Mathematics","Engineering","Environmental Science","Agricultural and Food Sciences","Education","Law","Linguistics"] # citations.paperId, citations.title, citations.year, citations.authors.name, citations.authors.paperCount, citations.authors.citationCount, citations.authors.hIndex, citations.url, citations.referenceCount, citations.citationCount, citations.influentialCitationCount, citations.isOpenAccess, citations.openAccessPdf, citations.fieldsOfStudy, citations.s2FieldsOfStudy, citations.publicationDate # publicationDateOrYear: 2019-03-05 ; 2019-03 ; 2019 ; 2016-03-05:2020-06-06 ; 1981-08-25: ; :2020-06-06 ; 1981:2020 # publicationTypes: Review ; JournalArticle CaseReport ; ClinicalTrial ; Dataset ; Editorial ; LettersAndComments ; MetaAnalysis ; News ; Study ; Book ; BookSection def process_fields(fields): return ",".join(fields) class SementicSearcher: def __init__(self, ban_paper = []) -> None: self.ban_paper = ban_paper def search_papers(self, query, limit=5, offset=0, fields=["title", "paperId", "abstract", "isOpenAccess", 'openAccessPdf', "year","publicationDate","citations.title","citations.abstract","citations.isOpenAccess","citations.openAccessPdf","citations.citationCount","citationCount","citations.year"], publicationDate=None, minCitationCount=0, year=None, publicationTypes=None, fieldsOfStudy=None): url = 'https://api.semanticscholar.org/graph/v1/paper/search' fields = process_fields(fields) if isinstance(fields, list) else fields # More specific query parameter query_params = { 'query': query, "limit": limit, "offset": offset, 'fields': fields, 'publicationDateOrYear': publicationDate, 'minCitationCount': minCitationCount, 'year': year, 'publicationTypes': publicationTypes, 'fieldsOfStudy': fieldsOfStudy } # Load the API key from the configuration file api_key = os.environ.get('SEMENTIC_SEARCH_API_KEY',None) headers = {'x-api-key': api_key} if api_key else None try: filtered_query_params = {key: value for key, value in query_params.items() if value is not None} response = requests.get(url, params=filtered_query_params, headers=headers) if response.status_code == 200: response_data = response.json() return response_data elif response.status_code == 429: time.sleep(1) print(f"Request failed with status code {response.status_code}: begin to retry") return self.search_papers(query, limit, offset, fields, publicationDate, minCitationCount, year, publicationTypes, fieldsOfStudy) else: print(f"Request failed with status code {response.status_code}: {response.text}") return None except requests.RequestException as e: print(f"An error occurred: {e}") return None def cal_cosine_similarity(self, vec1, vec2): return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) def cal_cosine_similarity_matric(self,matric1, matric2): if isinstance(matric1, list): matric1 = np.array(matric1) if isinstance(matric2, list): matric2 = np.array(matric2) if len(matric1.shape) == 1: matric1 = matric1.reshape(1, -1) if len(matric2.shape) == 1: matric2 = matric2.reshape(1, -1) dot_product = np.dot(matric1, matric2.T) norm1 = np.linalg.norm(matric1, axis=1) norm2 = np.linalg.norm(matric2, axis=1) cos_sim = dot_product / np.outer(norm1, norm2) scores = cos_sim.flatten() return scores.tolist() def read_arxiv_from_path(self, pdf_path): def is_pdf(binary_data): pdf_header = b'%PDF-' return binary_data.startswith(pdf_header) try: flag = is_pdf(pdf_path) if not flag: return None except Exception as e: pass try: article_dict = scipdf.parse_pdf_to_dict(pdf_path) except Exception as e: print(f"Failed to parse the PDF file: {pdf_path}") return None return article_dict def get_paper_embbeding_and_score(self,query_embedding, paper,llm): paper_content = f""" Title: {paper['title']} Abstract: {paper['abstract']} """ paper_embbeding = llm.get_embbeding(paper_content) paper_embbeding = np.array(paper_embbeding) score = self.cal_cosine_similarity(query_embedding,paper_embbeding) return [paper,score] def rerank_papers(self, query_embedding, paper_list,llm): if len(paper_list) == 0: return [] paper_list = [paper for paper in paper_list if paper] if len(paper_list) >= 50: paper_list = random.sample(paper_list,50) paper_contents = [] for paper in paper_list: paper_content = f""" Title: {paper['title']} Abstract: {paper['abstract']} """ paper_contents.append(paper_content) paper_contents_embbeding = llm.get_embbeding(paper_contents) paper_contents_embbeding = np.array(paper_contents_embbeding) scores = self.cal_cosine_similarity_matric(query_embedding,paper_contents_embbeding) # 根据score对paper_list进行排序 paper_list = sorted(zip(paper_list,scores),key = lambda x: x[1],reverse = True) paper_list = [paper[0] for paper in paper_list] return paper_list def search(self,query,max_results = 5 ,paper_list = None ,rerank_query = None,llm = None,year = None,publicationDate = None,need_download = True,fields = ["title", "paperId", "abstract", "isOpenAccess", 'openAccessPdf', "year","publicationDate","citationCount"]): if rerank_query: rerank_query_embbeding = llm.get_embbeding(rerank_query) rerank_query_embbeding = np.array(rerank_query_embbeding) readed_papers = [] if paper_list: if isinstance(paper_list,set): paper_list = list(paper_list) if len(paper_list) == 0 : pass elif isinstance(paper_list[0], str): readed_papers = paper_list elif isinstance(paper_list[0], Result): readed_papers = [paper.title for paper in paper_list] print(f"Searching for papers related to the query: <{query}>") results = self.search_papers(query,limit = 10 * max_results,year=year,publicationDate = publicationDate,fields = fields) if not results or "data" not in results: return [] new_results = [] for result in results['data']: if result['title'] in self.ban_paper: continue new_results.append(result) results = new_results final_results = [] if need_download: paper_candidates = [] for result in results: if not result['isOpenAccess'] or not result['openAccessPdf'] or result['title'] in readed_papers: continue else: paper_candidates.append(result) else: paper_candidates = results if llm and rerank_query: paper_candidates = self.rerank_papers(rerank_query_embbeding, paper_candidates,llm) if need_download: for result in paper_candidates: pdf_link = result['openAccessPdf']["url"] try: content = self.download_pdf(pdf_link) if not content: continue except Exception as e: continue title = result['title'] abstract = result['abstract'] citationCount = result['citationCount'] year = result['year'] article = self.read_arxiv_from_path(content) if not article: continue final_results.append(Result(title,abstract,article,citationCount,year)) if len(final_results) >= max_results: break else: for result in paper_candidates: title = result['title'] abstract = result['abstract'] citationCount = result['citationCount'] year = result['year'] final_results.append(Result(title,abstract,None,citationCount,year)) if len(final_results) >= max_results: break return final_results def search_related_paper(self,title,need_citation = True,need_reference = True,rerank_query = None,llm = None,paper_list = []): print(f"Searching for the related papers of <{title}>, need_citation: {need_citation}, need_reference: {need_reference}") fileds = ["title","abstract","citations.title","citations.abstract","citations.citationCount","references.title","references.abstract","references.citationCount","citations.isOpenAccess","citations.openAccessPdf","references.isOpenAccess","references.openAccessPdf","citations.year","references.year"] results = self.search_papers(title,limit = 3,fields=fileds) related_papers = [] related_papers_title = [] if not results or "data" not in results: return None for result in results["data"]: if not result: continue if need_citation: for citation in result["citations"]: if "openAccessPdf" not in citation or not citation["openAccessPdf"]: continue elif citation["title"] in related_papers_title or citation["title"] in self.ban_paper or citation["title"] in paper_list: continue elif citation["isOpenAccess"] == False or citation["openAccessPdf"] == None: continue else: related_papers.append(citation) related_papers_title.append(citation["title"]) if need_reference: for reference in result["references"]: if "openAccessPdf" not in reference or not reference["openAccessPdf"]: continue elif reference["title"] in related_papers_title or reference["title"] in self.ban_paper or reference["title"] in paper_list: continue elif reference["isOpenAccess"] == False or reference["openAccessPdf"] == None: continue else: related_papers.append(reference) related_papers_title.append(reference["title"]) if result: break if len(related_papers) >= 200: related_papers = related_papers[:200] if rerank_query and llm: rerank_query_embbeding = llm.get_embbeding(rerank_query) rerank_query_embbeding = np.array(rerank_query_embbeding) related_papers = self.rerank_papers(rerank_query_embbeding, related_papers,llm) related_papers = [[paper["title"],paper["abstract"],paper["openAccessPdf"]["url"],paper["citationCount"],paper['year']] for paper in related_papers] else: related_papers = [[paper["title"],paper["abstract"],paper["openAccessPdf"]["url"],paper["citationCount"],paper['year']] for paper in related_papers] related_papers = sorted(related_papers,key = lambda x: x[3],reverse = True) print(f"Found {len(related_papers)} related papers") for paper in related_papers: url = paper[2] content = self.download_pdf(url) if content: article = self.read_arxiv_from_path(content) if not article: continue result = Result(paper[0],paper[1],article,paper[3],paper[4]) return result return None def download_pdf(self, pdf_link): content = download(pdf_link) return content def read_paper_title_abstract(self,article): title = article["title"] abstract = article["abstract"] paper_content = f""" Title: {title} Abstract: {abstract} """ return paper_content def read_paper_content(self,article): paper_content = self.read_paper_title_abstract(article) for section in article["sections"]: paper_content += f"section: {section['heading']}\n content: {section['text']}\n ref_ids: {section['publication_ref']}\n" return paper_content def read_paper_content_with_ref(self,article): paper_content = self.read_paper_content(article) paper_content += "\n" i = 1 for refer in article["references"]: ref_id = refer["ref_id"] title = refer["title"] year = refer["year"] paper_content += f"Ref_id:{ref_id} Title: {title} Year: ({year})\n" i += 1 paper_content += "\n" return paper_content