Spaces:
Sleeping
Sleeping
舟勤
commited on
Commit
•
45d16e9
1
Parent(s):
c778599
v1
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +14 -0
- app.py +192 -0
- ckpt/blip2_pretrained_flant5xxl.pth +3 -0
- ckpt/finetune-vicuna7b-v2-nofrozen_imageQ.pth +3 -0
- ckpt/finetune-vicuna7b-v2.pth +3 -0
- ckpt/pretrain-billa7b-zh.pth +3 -0
- eval_configs/video_llama_eval.yaml +32 -0
- requirements.txt +11 -0
- video_llama/__init__.py +31 -0
- video_llama/app.py +192 -0
- video_llama/ckpt/blip2_pretrained_flant5xxl.pth +3 -0
- video_llama/ckpt/finetune-vicuna7b-v2-nofrozen_imageQ.pth +3 -0
- video_llama/ckpt/pretrain-billa7b-zh.pth +3 -0
- video_llama/common/__init__.py +0 -0
- video_llama/common/config.py +468 -0
- video_llama/common/dist_utils.py +137 -0
- video_llama/common/gradcam.py +24 -0
- video_llama/common/logger.py +195 -0
- video_llama/common/optims.py +119 -0
- video_llama/common/registry.py +329 -0
- video_llama/common/utils.py +424 -0
- video_llama/configs/datasets/cc_sbu/align.yaml +5 -0
- video_llama/configs/datasets/cc_sbu/defaults.yaml +5 -0
- video_llama/configs/datasets/instruct/llava_instruct.yaml +6 -0
- video_llama/configs/datasets/instruct/webvid_instruct.yaml +6 -0
- video_llama/configs/datasets/laion/defaults.yaml +5 -0
- video_llama/configs/datasets/webvid/defaults.yaml +6 -0
- video_llama/configs/default.yaml +5 -0
- video_llama/configs/models/minigpt4.yaml +33 -0
- video_llama/configs/models/video_llama.yaml +36 -0
- video_llama/conversation/__init__.py +0 -0
- video_llama/conversation/conversation_video.py +248 -0
- video_llama/datasets/__init__.py +0 -0
- video_llama/datasets/builders/__init__.py +77 -0
- video_llama/datasets/builders/base_dataset_builder.py +236 -0
- video_llama/datasets/builders/image_text_pair_builder.py +106 -0
- video_llama/datasets/builders/instruct_builder.py +78 -0
- video_llama/datasets/builders/video_caption_builder.py +34 -0
- video_llama/datasets/data_utils.py +196 -0
- video_llama/datasets/datasets/__init__.py +0 -0
- video_llama/datasets/datasets/base_dataset.py +68 -0
- video_llama/datasets/datasets/caption_datasets.py +85 -0
- video_llama/datasets/datasets/cc_sbu_dataset.py +49 -0
- video_llama/datasets/datasets/dataloader_utils.py +162 -0
- video_llama/datasets/datasets/laion_dataset.py +31 -0
- video_llama/datasets/datasets/llava_instruct_dataset.py +228 -0
- video_llama/datasets/datasets/video_instruct_dataset.py +253 -0
- video_llama/datasets/datasets/webvid_datasets.py +122 -0
- video_llama/models/Qformer.py +1217 -0
- video_llama/models/__init__.py +201 -0
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Video LLaMA
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.29.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: other
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
|
3 |
+
"""
|
4 |
+
import argparse
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.backends.cudnn as cudnn
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
from video_llama.common.config import Config
|
14 |
+
from video_llama.common.dist_utils import get_rank
|
15 |
+
from video_llama.common.registry import registry
|
16 |
+
from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle
|
17 |
+
import decord
|
18 |
+
decord.bridge.set_bridge('torch')
|
19 |
+
|
20 |
+
#%%
|
21 |
+
# imports modules for registration
|
22 |
+
from video_llama.datasets.builders import *
|
23 |
+
from video_llama.models import *
|
24 |
+
from video_llama.processors import *
|
25 |
+
from video_llama.runners import *
|
26 |
+
from video_llama.tasks import *
|
27 |
+
|
28 |
+
#%%
|
29 |
+
def parse_args():
|
30 |
+
parser = argparse.ArgumentParser(description="Demo")
|
31 |
+
parser.add_argument("--cfg-path", default='eval_configs/video_llama_eval.yaml', help="path to configuration file.")
|
32 |
+
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
|
33 |
+
parser.add_argument(
|
34 |
+
"--options",
|
35 |
+
nargs="+",
|
36 |
+
help="override some settings in the used config, the key-value pair "
|
37 |
+
"in xxx=yyy format will be merged into config file (deprecate), "
|
38 |
+
"change to --cfg-options instead.",
|
39 |
+
)
|
40 |
+
args = parser.parse_args()
|
41 |
+
return args
|
42 |
+
|
43 |
+
|
44 |
+
def setup_seeds(config):
|
45 |
+
seed = config.run_cfg.seed + get_rank()
|
46 |
+
|
47 |
+
random.seed(seed)
|
48 |
+
np.random.seed(seed)
|
49 |
+
torch.manual_seed(seed)
|
50 |
+
|
51 |
+
cudnn.benchmark = False
|
52 |
+
cudnn.deterministic = True
|
53 |
+
|
54 |
+
|
55 |
+
# ========================================
|
56 |
+
# Model Initialization
|
57 |
+
# ========================================
|
58 |
+
|
59 |
+
print('Initializing Chat')
|
60 |
+
args = parse_args()
|
61 |
+
cfg = Config(args)
|
62 |
+
|
63 |
+
model_config = cfg.model_cfg
|
64 |
+
model_config.device_8bit = args.gpu_id
|
65 |
+
model_cls = registry.get_model_class(model_config.arch)
|
66 |
+
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
|
67 |
+
|
68 |
+
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
|
69 |
+
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
70 |
+
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
|
71 |
+
print('Initialization Finished')
|
72 |
+
|
73 |
+
# ========================================
|
74 |
+
# Gradio Setting
|
75 |
+
# ========================================
|
76 |
+
|
77 |
+
def gradio_reset(chat_state, img_list):
|
78 |
+
if chat_state is not None:
|
79 |
+
chat_state.messages = []
|
80 |
+
if img_list is not None:
|
81 |
+
img_list = []
|
82 |
+
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
83 |
+
|
84 |
+
def upload_imgorvideo(gr_video, gr_img, text_input, chat_state):
|
85 |
+
if gr_img is None and gr_video is None:
|
86 |
+
return None, None, None, gr.update(interactive=True), chat_state, None
|
87 |
+
elif gr_img is not None and gr_video is None:
|
88 |
+
print(gr_img)
|
89 |
+
chat_state = Conversation(
|
90 |
+
system= "You are able to understand the visual content that the user provides."
|
91 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
92 |
+
roles=("Human", "Assistant"),
|
93 |
+
messages=[],
|
94 |
+
offset=0,
|
95 |
+
sep_style=SeparatorStyle.SINGLE,
|
96 |
+
sep="###",
|
97 |
+
)
|
98 |
+
img_list = []
|
99 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
100 |
+
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
101 |
+
elif gr_video is not None and gr_img is None:
|
102 |
+
print(gr_video)
|
103 |
+
chat_state = default_conversation.copy()
|
104 |
+
chat_state = Conversation(
|
105 |
+
system= "You are able to understand the visual content that the user provides."
|
106 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
107 |
+
roles=("Human", "Assistant"),
|
108 |
+
messages=[],
|
109 |
+
offset=0,
|
110 |
+
sep_style=SeparatorStyle.SINGLE,
|
111 |
+
sep="###",
|
112 |
+
)
|
113 |
+
img_list = []
|
114 |
+
llm_message = chat.upload_video(gr_video, chat_state, img_list)
|
115 |
+
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
116 |
+
else:
|
117 |
+
# img_list = []
|
118 |
+
return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None
|
119 |
+
|
120 |
+
def gradio_ask(user_message, chatbot, chat_state):
|
121 |
+
if len(user_message) == 0:
|
122 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
123 |
+
chat.ask(user_message, chat_state)
|
124 |
+
chatbot = chatbot + [[user_message, None]]
|
125 |
+
return '', chatbot, chat_state
|
126 |
+
|
127 |
+
|
128 |
+
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
|
129 |
+
llm_message = chat.answer(conv=chat_state,
|
130 |
+
img_list=img_list,
|
131 |
+
num_beams=num_beams,
|
132 |
+
temperature=temperature,
|
133 |
+
max_new_tokens=300,
|
134 |
+
max_length=2000)[0]
|
135 |
+
chatbot[-1][1] = llm_message
|
136 |
+
print(chat_state.get_prompt())
|
137 |
+
print(chat_state)
|
138 |
+
return chatbot, chat_state, img_list
|
139 |
+
|
140 |
+
title = """<h1 align="center">Demo of Video-LLaMA</h1>"""
|
141 |
+
description = """<h3>This is the demo of Video-LLaMA. Upload your images/videos and start chatting!</h3>"""
|
142 |
+
|
143 |
+
|
144 |
+
#TODO show examples below
|
145 |
+
|
146 |
+
with gr.Blocks() as demo:
|
147 |
+
gr.Markdown(title)
|
148 |
+
gr.Markdown(description)
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column(scale=0.5):
|
152 |
+
video = gr.Video()
|
153 |
+
image = gr.Image(type="pil")
|
154 |
+
|
155 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
156 |
+
clear = gr.Button("Restart")
|
157 |
+
|
158 |
+
num_beams = gr.Slider(
|
159 |
+
minimum=1,
|
160 |
+
maximum=10,
|
161 |
+
value=1,
|
162 |
+
step=1,
|
163 |
+
interactive=True,
|
164 |
+
label="beam search numbers)",
|
165 |
+
)
|
166 |
+
|
167 |
+
temperature = gr.Slider(
|
168 |
+
minimum=0.1,
|
169 |
+
maximum=2.0,
|
170 |
+
value=1.0,
|
171 |
+
step=0.1,
|
172 |
+
interactive=True,
|
173 |
+
label="Temperature",
|
174 |
+
)
|
175 |
+
|
176 |
+
with gr.Column():
|
177 |
+
chat_state = gr.State()
|
178 |
+
img_list = gr.State()
|
179 |
+
chatbot = gr.Chatbot(label='Video-LLaMA')
|
180 |
+
text_input = gr.Textbox(label='User', placeholder='Please upload your image/video first', interactive=False)
|
181 |
+
|
182 |
+
|
183 |
+
upload_button.click(upload_imgorvideo, [video, image, text_input, chat_state], [video, image, text_input, upload_button, chat_state, img_list])
|
184 |
+
|
185 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
186 |
+
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
187 |
+
)
|
188 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False)
|
189 |
+
|
190 |
+
demo.launch(share=False, enable_queue=False)
|
191 |
+
|
192 |
+
# %%
|
ckpt/blip2_pretrained_flant5xxl.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b3839ea6c617f315ead9bf4036bbb0f0cf6bf62695ecfc14968ea626af03a29
|
3 |
+
size 433481467
|
ckpt/finetune-vicuna7b-v2-nofrozen_imageQ.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc4b32437c90df51bc3faa29deaa9b25ab77e1707ac79066f17ae3193ebe8bfc
|
3 |
+
size 1527692539
|
ckpt/finetune-vicuna7b-v2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0680ad8eb14c2a3273b7be71309ab6b06c9f426e87ad4675a903371fe0fa8162
|
3 |
+
size 265436777
|
ckpt/pretrain-billa7b-zh.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f50a51db3055e1be6461f6dec833fbbbba28650287d26c8787664c8ee31dcf0f
|
3 |
+
size 265435689
|
eval_configs/video_llama_eval.yaml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: video_llama
|
3 |
+
model_type: pretrain_vicuna
|
4 |
+
freeze_vit: True
|
5 |
+
freeze_qformer: True
|
6 |
+
max_txt_len: 512
|
7 |
+
end_sym: "###"
|
8 |
+
low_resource: False
|
9 |
+
|
10 |
+
|
11 |
+
llama_model: "DAMO-NLP-SG/vicuna-7b"
|
12 |
+
|
13 |
+
fusion_head_layers: 2
|
14 |
+
max_frame_pos: 32
|
15 |
+
fusion_header_type: "seqTransf"
|
16 |
+
|
17 |
+
ckpt: 'ckpt/finetune-vicuna7b-v2-nofrozen_imageQ.pth'
|
18 |
+
q_former_model: 'ckpt/blip2_pretrained_flant5xxl.pth'
|
19 |
+
|
20 |
+
datasets:
|
21 |
+
webvid:
|
22 |
+
vis_processor:
|
23 |
+
train:
|
24 |
+
name: "alpro_video_eval"
|
25 |
+
n_frms: 8
|
26 |
+
image_size: 224
|
27 |
+
text_processor:
|
28 |
+
train:
|
29 |
+
name: "blip_caption"
|
30 |
+
|
31 |
+
run:
|
32 |
+
task: video_text_pretrain
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.28.0
|
2 |
+
tqdm
|
3 |
+
decord
|
4 |
+
timm
|
5 |
+
einops
|
6 |
+
opencv_python
|
7 |
+
torchvision
|
8 |
+
|
9 |
+
salesforce-lavis
|
10 |
+
bitsandbytes
|
11 |
+
accelerate
|
video_llama/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
|
13 |
+
from video_llama.common.registry import registry
|
14 |
+
|
15 |
+
from video_llama.datasets.builders import *
|
16 |
+
from video_llama.models import *
|
17 |
+
from video_llama.processors import *
|
18 |
+
from video_llama.tasks import *
|
19 |
+
|
20 |
+
|
21 |
+
root_dir = os.path.dirname(os.path.abspath(__file__))
|
22 |
+
default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml"))
|
23 |
+
|
24 |
+
registry.register_path("library_root", root_dir)
|
25 |
+
repo_root = os.path.join(root_dir, "..")
|
26 |
+
registry.register_path("repo_root", repo_root)
|
27 |
+
cache_root = os.path.join(repo_root, default_cfg.env.cache_root)
|
28 |
+
registry.register_path("cache_root", cache_root)
|
29 |
+
|
30 |
+
registry.register("MAX_INT", sys.maxsize)
|
31 |
+
registry.register("SPLIT_NAMES", ["train", "val", "test"])
|
video_llama/app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py
|
3 |
+
"""
|
4 |
+
import argparse
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.backends.cudnn as cudnn
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
from video_llama.common.config import Config
|
14 |
+
from video_llama.common.dist_utils import get_rank
|
15 |
+
from video_llama.common.registry import registry
|
16 |
+
from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle
|
17 |
+
import decord
|
18 |
+
decord.bridge.set_bridge('torch')
|
19 |
+
|
20 |
+
#%%
|
21 |
+
# imports modules for registration
|
22 |
+
from video_llama.datasets.builders import *
|
23 |
+
from video_llama.models import *
|
24 |
+
from video_llama.processors import *
|
25 |
+
from video_llama.runners import *
|
26 |
+
from video_llama.tasks import *
|
27 |
+
|
28 |
+
#%%
|
29 |
+
def parse_args():
|
30 |
+
parser = argparse.ArgumentParser(description="Demo")
|
31 |
+
parser.add_argument("--cfg-path", default='eval_configs/video_llama_eval.yaml', help="path to configuration file.")
|
32 |
+
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
|
33 |
+
parser.add_argument(
|
34 |
+
"--options",
|
35 |
+
nargs="+",
|
36 |
+
help="override some settings in the used config, the key-value pair "
|
37 |
+
"in xxx=yyy format will be merged into config file (deprecate), "
|
38 |
+
"change to --cfg-options instead.",
|
39 |
+
)
|
40 |
+
args = parser.parse_args()
|
41 |
+
return args
|
42 |
+
|
43 |
+
|
44 |
+
def setup_seeds(config):
|
45 |
+
seed = config.run_cfg.seed + get_rank()
|
46 |
+
|
47 |
+
random.seed(seed)
|
48 |
+
np.random.seed(seed)
|
49 |
+
torch.manual_seed(seed)
|
50 |
+
|
51 |
+
cudnn.benchmark = False
|
52 |
+
cudnn.deterministic = True
|
53 |
+
|
54 |
+
|
55 |
+
# ========================================
|
56 |
+
# Model Initialization
|
57 |
+
# ========================================
|
58 |
+
|
59 |
+
print('Initializing Chat')
|
60 |
+
args = parse_args()
|
61 |
+
cfg = Config(args)
|
62 |
+
|
63 |
+
model_config = cfg.model_cfg
|
64 |
+
model_config.device_8bit = args.gpu_id
|
65 |
+
model_cls = registry.get_model_class(model_config.arch)
|
66 |
+
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
|
67 |
+
|
68 |
+
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
|
69 |
+
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
70 |
+
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
|
71 |
+
print('Initialization Finished')
|
72 |
+
|
73 |
+
# ========================================
|
74 |
+
# Gradio Setting
|
75 |
+
# ========================================
|
76 |
+
|
77 |
+
def gradio_reset(chat_state, img_list):
|
78 |
+
if chat_state is not None:
|
79 |
+
chat_state.messages = []
|
80 |
+
if img_list is not None:
|
81 |
+
img_list = []
|
82 |
+
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
83 |
+
|
84 |
+
def upload_imgorvideo(gr_video, gr_img, text_input, chat_state):
|
85 |
+
if gr_img is None and gr_video is None:
|
86 |
+
return None, None, None, gr.update(interactive=True), chat_state, None
|
87 |
+
elif gr_img is not None and gr_video is None:
|
88 |
+
print(gr_img)
|
89 |
+
chat_state = Conversation(
|
90 |
+
system= "You are able to understand the visual content that the user provides."
|
91 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
92 |
+
roles=("Human", "Assistant"),
|
93 |
+
messages=[],
|
94 |
+
offset=0,
|
95 |
+
sep_style=SeparatorStyle.SINGLE,
|
96 |
+
sep="###",
|
97 |
+
)
|
98 |
+
img_list = []
|
99 |
+
llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
100 |
+
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
101 |
+
elif gr_video is not None and gr_img is None:
|
102 |
+
print(gr_video)
|
103 |
+
chat_state = default_conversation.copy()
|
104 |
+
chat_state = Conversation(
|
105 |
+
system= "You are able to understand the visual content that the user provides."
|
106 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
107 |
+
roles=("Human", "Assistant"),
|
108 |
+
messages=[],
|
109 |
+
offset=0,
|
110 |
+
sep_style=SeparatorStyle.SINGLE,
|
111 |
+
sep="###",
|
112 |
+
)
|
113 |
+
img_list = []
|
114 |
+
llm_message = chat.upload_video(gr_video, chat_state, img_list)
|
115 |
+
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list
|
116 |
+
else:
|
117 |
+
# img_list = []
|
118 |
+
return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None
|
119 |
+
|
120 |
+
def gradio_ask(user_message, chatbot, chat_state):
|
121 |
+
if len(user_message) == 0:
|
122 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
123 |
+
chat.ask(user_message, chat_state)
|
124 |
+
chatbot = chatbot + [[user_message, None]]
|
125 |
+
return '', chatbot, chat_state
|
126 |
+
|
127 |
+
|
128 |
+
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
|
129 |
+
llm_message = chat.answer(conv=chat_state,
|
130 |
+
img_list=img_list,
|
131 |
+
num_beams=num_beams,
|
132 |
+
temperature=temperature,
|
133 |
+
max_new_tokens=300,
|
134 |
+
max_length=2000)[0]
|
135 |
+
chatbot[-1][1] = llm_message
|
136 |
+
print(chat_state.get_prompt())
|
137 |
+
print(chat_state)
|
138 |
+
return chatbot, chat_state, img_list
|
139 |
+
|
140 |
+
title = """<h1 align="center">Demo of Video-LLaMA</h1>"""
|
141 |
+
description = """<h3>This is the demo of Video-LLaMA. Upload your images/videos and start chatting!</h3>"""
|
142 |
+
|
143 |
+
|
144 |
+
#TODO show examples below
|
145 |
+
|
146 |
+
with gr.Blocks() as demo:
|
147 |
+
gr.Markdown(title)
|
148 |
+
gr.Markdown(description)
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column(scale=0.5):
|
152 |
+
video = gr.Video()
|
153 |
+
image = gr.Image(type="pil")
|
154 |
+
|
155 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
156 |
+
clear = gr.Button("Restart")
|
157 |
+
|
158 |
+
num_beams = gr.Slider(
|
159 |
+
minimum=1,
|
160 |
+
maximum=10,
|
161 |
+
value=1,
|
162 |
+
step=1,
|
163 |
+
interactive=True,
|
164 |
+
label="beam search numbers)",
|
165 |
+
)
|
166 |
+
|
167 |
+
temperature = gr.Slider(
|
168 |
+
minimum=0.1,
|
169 |
+
maximum=2.0,
|
170 |
+
value=1.0,
|
171 |
+
step=0.1,
|
172 |
+
interactive=True,
|
173 |
+
label="Temperature",
|
174 |
+
)
|
175 |
+
|
176 |
+
with gr.Column():
|
177 |
+
chat_state = gr.State()
|
178 |
+
img_list = gr.State()
|
179 |
+
chatbot = gr.Chatbot(label='Video-LLaMA')
|
180 |
+
text_input = gr.Textbox(label='User', placeholder='Please upload your image/video first', interactive=False)
|
181 |
+
|
182 |
+
|
183 |
+
upload_button.click(upload_imgorvideo, [video, image, text_input, chat_state], [video, image, text_input, upload_button, chat_state, img_list])
|
184 |
+
|
185 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
186 |
+
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
187 |
+
)
|
188 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False)
|
189 |
+
|
190 |
+
demo.launch(share=False, enable_queue=False)
|
191 |
+
|
192 |
+
# %%
|
video_llama/ckpt/blip2_pretrained_flant5xxl.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b3839ea6c617f315ead9bf4036bbb0f0cf6bf62695ecfc14968ea626af03a29
|
3 |
+
size 433481467
|
video_llama/ckpt/finetune-vicuna7b-v2-nofrozen_imageQ.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46af76d307c14d28c56534e4bf8654343e5512aa1285fc1c1fdb5728c418e7ca
|
3 |
+
size 623104000
|
video_llama/ckpt/pretrain-billa7b-zh.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f50a51db3055e1be6461f6dec833fbbbba28650287d26c8787664c8ee31dcf0f
|
3 |
+
size 265435689
|
video_llama/common/__init__.py
ADDED
File without changes
|
video_llama/common/config.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import logging
|
9 |
+
import json
|
10 |
+
from typing import Dict
|
11 |
+
|
12 |
+
from omegaconf import OmegaConf
|
13 |
+
from video_llama.common.registry import registry
|
14 |
+
|
15 |
+
|
16 |
+
class Config:
|
17 |
+
def __init__(self, args):
|
18 |
+
self.config = {}
|
19 |
+
|
20 |
+
self.args = args
|
21 |
+
|
22 |
+
# Register the config and configuration for setup
|
23 |
+
registry.register("configuration", self)
|
24 |
+
|
25 |
+
user_config = self._build_opt_list(self.args.options)
|
26 |
+
|
27 |
+
config = OmegaConf.load(self.args.cfg_path)
|
28 |
+
|
29 |
+
runner_config = self.build_runner_config(config)
|
30 |
+
model_config = self.build_model_config(config, **user_config)
|
31 |
+
dataset_config = self.build_dataset_config(config)
|
32 |
+
|
33 |
+
# Validate the user-provided runner configuration
|
34 |
+
# model and dataset configuration are supposed to be validated by the respective classes
|
35 |
+
# [TODO] validate the model/dataset configuration
|
36 |
+
# self._validate_runner_config(runner_config)
|
37 |
+
|
38 |
+
# Override the default configuration with user options.
|
39 |
+
self.config = OmegaConf.merge(
|
40 |
+
runner_config, model_config, dataset_config, user_config
|
41 |
+
)
|
42 |
+
|
43 |
+
def _validate_runner_config(self, runner_config):
|
44 |
+
"""
|
45 |
+
This method validates the configuration, such that
|
46 |
+
1) all the user specified options are valid;
|
47 |
+
2) no type mismatches between the user specified options and the config.
|
48 |
+
"""
|
49 |
+
runner_config_validator = create_runner_config_validator()
|
50 |
+
runner_config_validator.validate(runner_config)
|
51 |
+
|
52 |
+
def _build_opt_list(self, opts):
|
53 |
+
opts_dot_list = self._convert_to_dot_list(opts)
|
54 |
+
return OmegaConf.from_dotlist(opts_dot_list)
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def build_model_config(config, **kwargs):
|
58 |
+
model = config.get("model", None)
|
59 |
+
assert model is not None, "Missing model configuration file."
|
60 |
+
|
61 |
+
model_cls = registry.get_model_class(model.arch)
|
62 |
+
assert model_cls is not None, f"Model '{model.arch}' has not been registered."
|
63 |
+
|
64 |
+
model_type = kwargs.get("model.model_type", None)
|
65 |
+
if not model_type:
|
66 |
+
model_type = model.get("model_type", None)
|
67 |
+
# else use the model type selected by user.
|
68 |
+
|
69 |
+
assert model_type is not None, "Missing model_type."
|
70 |
+
|
71 |
+
model_config_path = model_cls.default_config_path(model_type=model_type)
|
72 |
+
|
73 |
+
model_config = OmegaConf.create()
|
74 |
+
# hierarchy override, customized config > default config
|
75 |
+
model_config = OmegaConf.merge(
|
76 |
+
model_config,
|
77 |
+
OmegaConf.load(model_config_path),
|
78 |
+
{"model": config["model"]},
|
79 |
+
)
|
80 |
+
|
81 |
+
return model_config
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def build_runner_config(config):
|
85 |
+
return {"run": config.run}
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def build_dataset_config(config):
|
89 |
+
datasets = config.get("datasets", None)
|
90 |
+
if datasets is None:
|
91 |
+
raise KeyError(
|
92 |
+
"Expecting 'datasets' as the root key for dataset configuration."
|
93 |
+
)
|
94 |
+
|
95 |
+
dataset_config = OmegaConf.create()
|
96 |
+
|
97 |
+
for dataset_name in datasets:
|
98 |
+
builder_cls = registry.get_builder_class(dataset_name)
|
99 |
+
|
100 |
+
dataset_config_type = datasets[dataset_name].get("type", "default")
|
101 |
+
dataset_config_path = builder_cls.default_config_path(
|
102 |
+
type=dataset_config_type
|
103 |
+
)
|
104 |
+
|
105 |
+
# hierarchy override, customized config > default config
|
106 |
+
dataset_config = OmegaConf.merge(
|
107 |
+
dataset_config,
|
108 |
+
OmegaConf.load(dataset_config_path),
|
109 |
+
{"datasets": {dataset_name: config["datasets"][dataset_name]}},
|
110 |
+
)
|
111 |
+
|
112 |
+
return dataset_config
|
113 |
+
|
114 |
+
def _convert_to_dot_list(self, opts):
|
115 |
+
if opts is None:
|
116 |
+
opts = []
|
117 |
+
|
118 |
+
if len(opts) == 0:
|
119 |
+
return opts
|
120 |
+
|
121 |
+
has_equal = opts[0].find("=") != -1
|
122 |
+
|
123 |
+
if has_equal:
|
124 |
+
return opts
|
125 |
+
|
126 |
+
return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])]
|
127 |
+
|
128 |
+
def get_config(self):
|
129 |
+
return self.config
|
130 |
+
|
131 |
+
@property
|
132 |
+
def run_cfg(self):
|
133 |
+
return self.config.run
|
134 |
+
|
135 |
+
@property
|
136 |
+
def datasets_cfg(self):
|
137 |
+
return self.config.datasets
|
138 |
+
|
139 |
+
@property
|
140 |
+
def model_cfg(self):
|
141 |
+
return self.config.model
|
142 |
+
|
143 |
+
def pretty_print(self):
|
144 |
+
logging.info("\n===== Running Parameters =====")
|
145 |
+
logging.info(self._convert_node_to_json(self.config.run))
|
146 |
+
|
147 |
+
logging.info("\n====== Dataset Attributes ======")
|
148 |
+
datasets = self.config.datasets
|
149 |
+
|
150 |
+
for dataset in datasets:
|
151 |
+
if dataset in self.config.datasets:
|
152 |
+
logging.info(f"\n======== {dataset} =======")
|
153 |
+
dataset_config = self.config.datasets[dataset]
|
154 |
+
logging.info(self._convert_node_to_json(dataset_config))
|
155 |
+
else:
|
156 |
+
logging.warning(f"No dataset named '{dataset}' in config. Skipping")
|
157 |
+
|
158 |
+
logging.info(f"\n====== Model Attributes ======")
|
159 |
+
logging.info(self._convert_node_to_json(self.config.model))
|
160 |
+
|
161 |
+
def _convert_node_to_json(self, node):
|
162 |
+
container = OmegaConf.to_container(node, resolve=True)
|
163 |
+
return json.dumps(container, indent=4, sort_keys=True)
|
164 |
+
|
165 |
+
def to_dict(self):
|
166 |
+
return OmegaConf.to_container(self.config)
|
167 |
+
|
168 |
+
|
169 |
+
def node_to_dict(node):
|
170 |
+
return OmegaConf.to_container(node)
|
171 |
+
|
172 |
+
|
173 |
+
class ConfigValidator:
|
174 |
+
"""
|
175 |
+
This is a preliminary implementation to centralize and validate the configuration.
|
176 |
+
May be altered in the future.
|
177 |
+
|
178 |
+
A helper class to validate configurations from yaml file.
|
179 |
+
|
180 |
+
This serves the following purposes:
|
181 |
+
1. Ensure all the options in the yaml are defined, raise error if not.
|
182 |
+
2. when type mismatches are found, the validator will raise an error.
|
183 |
+
3. a central place to store and display helpful messages for supported configurations.
|
184 |
+
|
185 |
+
"""
|
186 |
+
|
187 |
+
class _Argument:
|
188 |
+
def __init__(self, name, choices=None, type=None, help=None):
|
189 |
+
self.name = name
|
190 |
+
self.val = None
|
191 |
+
self.choices = choices
|
192 |
+
self.type = type
|
193 |
+
self.help = help
|
194 |
+
|
195 |
+
def __str__(self):
|
196 |
+
s = f"{self.name}={self.val}"
|
197 |
+
if self.type is not None:
|
198 |
+
s += f", ({self.type})"
|
199 |
+
if self.choices is not None:
|
200 |
+
s += f", choices: {self.choices}"
|
201 |
+
if self.help is not None:
|
202 |
+
s += f", ({self.help})"
|
203 |
+
return s
|
204 |
+
|
205 |
+
def __init__(self, description):
|
206 |
+
self.description = description
|
207 |
+
|
208 |
+
self.arguments = dict()
|
209 |
+
|
210 |
+
self.parsed_args = None
|
211 |
+
|
212 |
+
def __getitem__(self, key):
|
213 |
+
assert self.parsed_args is not None, "No arguments parsed yet."
|
214 |
+
|
215 |
+
return self.parsed_args[key]
|
216 |
+
|
217 |
+
def __str__(self) -> str:
|
218 |
+
return self.format_help()
|
219 |
+
|
220 |
+
def add_argument(self, *args, **kwargs):
|
221 |
+
"""
|
222 |
+
Assume the first argument is the name of the argument.
|
223 |
+
"""
|
224 |
+
self.arguments[args[0]] = self._Argument(*args, **kwargs)
|
225 |
+
|
226 |
+
def validate(self, config=None):
|
227 |
+
"""
|
228 |
+
Convert yaml config (dict-like) to list, required by argparse.
|
229 |
+
"""
|
230 |
+
for k, v in config.items():
|
231 |
+
assert (
|
232 |
+
k in self.arguments
|
233 |
+
), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}."""
|
234 |
+
|
235 |
+
if self.arguments[k].type is not None:
|
236 |
+
try:
|
237 |
+
self.arguments[k].val = self.arguments[k].type(v)
|
238 |
+
except ValueError:
|
239 |
+
raise ValueError(f"{k} is not a valid {self.arguments[k].type}.")
|
240 |
+
|
241 |
+
if self.arguments[k].choices is not None:
|
242 |
+
assert (
|
243 |
+
v in self.arguments[k].choices
|
244 |
+
), f"""{k} must be one of {self.arguments[k].choices}."""
|
245 |
+
|
246 |
+
return config
|
247 |
+
|
248 |
+
def format_arguments(self):
|
249 |
+
return str([f"{k}" for k in sorted(self.arguments.keys())])
|
250 |
+
|
251 |
+
def format_help(self):
|
252 |
+
# description + key-value pair string for each argument
|
253 |
+
help_msg = str(self.description)
|
254 |
+
return help_msg + ", available arguments: " + self.format_arguments()
|
255 |
+
|
256 |
+
def print_help(self):
|
257 |
+
# display help message
|
258 |
+
print(self.format_help())
|
259 |
+
|
260 |
+
|
261 |
+
def create_runner_config_validator():
|
262 |
+
validator = ConfigValidator(description="Runner configurations")
|
263 |
+
|
264 |
+
validator.add_argument(
|
265 |
+
"runner",
|
266 |
+
type=str,
|
267 |
+
choices=["runner_base", "runner_iter"],
|
268 |
+
help="""Runner to use. The "runner_base" uses epoch-based training while iter-based
|
269 |
+
runner runs based on iters. Default: runner_base""",
|
270 |
+
)
|
271 |
+
# add argumetns for training dataset ratios
|
272 |
+
validator.add_argument(
|
273 |
+
"train_dataset_ratios",
|
274 |
+
type=Dict[str, float],
|
275 |
+
help="""Ratios of training dataset. This is used in iteration-based runner.
|
276 |
+
Do not support for epoch-based runner because how to define an epoch becomes tricky.
|
277 |
+
Default: None""",
|
278 |
+
)
|
279 |
+
validator.add_argument(
|
280 |
+
"max_iters",
|
281 |
+
type=float,
|
282 |
+
help="Maximum number of iterations to run.",
|
283 |
+
)
|
284 |
+
validator.add_argument(
|
285 |
+
"max_epoch",
|
286 |
+
type=int,
|
287 |
+
help="Maximum number of epochs to run.",
|
288 |
+
)
|
289 |
+
# add arguments for iters_per_inner_epoch
|
290 |
+
validator.add_argument(
|
291 |
+
"iters_per_inner_epoch",
|
292 |
+
type=float,
|
293 |
+
help="Number of iterations per inner epoch. This is required when runner is runner_iter.",
|
294 |
+
)
|
295 |
+
lr_scheds_choices = registry.list_lr_schedulers()
|
296 |
+
validator.add_argument(
|
297 |
+
"lr_sched",
|
298 |
+
type=str,
|
299 |
+
choices=lr_scheds_choices,
|
300 |
+
help="Learning rate scheduler to use, from {}".format(lr_scheds_choices),
|
301 |
+
)
|
302 |
+
task_choices = registry.list_tasks()
|
303 |
+
validator.add_argument(
|
304 |
+
"task",
|
305 |
+
type=str,
|
306 |
+
choices=task_choices,
|
307 |
+
help="Task to use, from {}".format(task_choices),
|
308 |
+
)
|
309 |
+
# add arguments for init_lr
|
310 |
+
validator.add_argument(
|
311 |
+
"init_lr",
|
312 |
+
type=float,
|
313 |
+
help="Initial learning rate. This will be the learning rate after warmup and before decay.",
|
314 |
+
)
|
315 |
+
# add arguments for min_lr
|
316 |
+
validator.add_argument(
|
317 |
+
"min_lr",
|
318 |
+
type=float,
|
319 |
+
help="Minimum learning rate (after decay).",
|
320 |
+
)
|
321 |
+
# add arguments for warmup_lr
|
322 |
+
validator.add_argument(
|
323 |
+
"warmup_lr",
|
324 |
+
type=float,
|
325 |
+
help="Starting learning rate for warmup.",
|
326 |
+
)
|
327 |
+
# add arguments for learning rate decay rate
|
328 |
+
validator.add_argument(
|
329 |
+
"lr_decay_rate",
|
330 |
+
type=float,
|
331 |
+
help="Learning rate decay rate. Required if using a decaying learning rate scheduler.",
|
332 |
+
)
|
333 |
+
# add arguments for weight decay
|
334 |
+
validator.add_argument(
|
335 |
+
"weight_decay",
|
336 |
+
type=float,
|
337 |
+
help="Weight decay rate.",
|
338 |
+
)
|
339 |
+
# add arguments for training batch size
|
340 |
+
validator.add_argument(
|
341 |
+
"batch_size_train",
|
342 |
+
type=int,
|
343 |
+
help="Training batch size.",
|
344 |
+
)
|
345 |
+
# add arguments for evaluation batch size
|
346 |
+
validator.add_argument(
|
347 |
+
"batch_size_eval",
|
348 |
+
type=int,
|
349 |
+
help="Evaluation batch size, including validation and testing.",
|
350 |
+
)
|
351 |
+
# add arguments for number of workers for data loading
|
352 |
+
validator.add_argument(
|
353 |
+
"num_workers",
|
354 |
+
help="Number of workers for data loading.",
|
355 |
+
)
|
356 |
+
# add arguments for warm up steps
|
357 |
+
validator.add_argument(
|
358 |
+
"warmup_steps",
|
359 |
+
type=int,
|
360 |
+
help="Number of warmup steps. Required if a warmup schedule is used.",
|
361 |
+
)
|
362 |
+
# add arguments for random seed
|
363 |
+
validator.add_argument(
|
364 |
+
"seed",
|
365 |
+
type=int,
|
366 |
+
help="Random seed.",
|
367 |
+
)
|
368 |
+
# add arguments for output directory
|
369 |
+
validator.add_argument(
|
370 |
+
"output_dir",
|
371 |
+
type=str,
|
372 |
+
help="Output directory to save checkpoints and logs.",
|
373 |
+
)
|
374 |
+
# add arguments for whether only use evaluation
|
375 |
+
validator.add_argument(
|
376 |
+
"evaluate",
|
377 |
+
help="Whether to only evaluate the model. If true, training will not be performed.",
|
378 |
+
)
|
379 |
+
# add arguments for splits used for training, e.g. ["train", "val"]
|
380 |
+
validator.add_argument(
|
381 |
+
"train_splits",
|
382 |
+
type=list,
|
383 |
+
help="Splits to use for training.",
|
384 |
+
)
|
385 |
+
# add arguments for splits used for validation, e.g. ["val"]
|
386 |
+
validator.add_argument(
|
387 |
+
"valid_splits",
|
388 |
+
type=list,
|
389 |
+
help="Splits to use for validation. If not provided, will skip the validation.",
|
390 |
+
)
|
391 |
+
# add arguments for splits used for testing, e.g. ["test"]
|
392 |
+
validator.add_argument(
|
393 |
+
"test_splits",
|
394 |
+
type=list,
|
395 |
+
help="Splits to use for testing. If not provided, will skip the testing.",
|
396 |
+
)
|
397 |
+
# add arguments for accumulating gradient for iterations
|
398 |
+
validator.add_argument(
|
399 |
+
"accum_grad_iters",
|
400 |
+
type=int,
|
401 |
+
help="Number of iterations to accumulate gradient for.",
|
402 |
+
)
|
403 |
+
|
404 |
+
# ====== distributed training ======
|
405 |
+
validator.add_argument(
|
406 |
+
"device",
|
407 |
+
type=str,
|
408 |
+
choices=["cpu", "cuda"],
|
409 |
+
help="Device to use. Support 'cuda' or 'cpu' as for now.",
|
410 |
+
)
|
411 |
+
validator.add_argument(
|
412 |
+
"world_size",
|
413 |
+
type=int,
|
414 |
+
help="Number of processes participating in the job.",
|
415 |
+
)
|
416 |
+
validator.add_argument("dist_url", type=str)
|
417 |
+
validator.add_argument("distributed", type=bool)
|
418 |
+
# add arguments to opt using distributed sampler during evaluation or not
|
419 |
+
validator.add_argument(
|
420 |
+
"use_dist_eval_sampler",
|
421 |
+
type=bool,
|
422 |
+
help="Whether to use distributed sampler during evaluation or not.",
|
423 |
+
)
|
424 |
+
|
425 |
+
# ====== task specific ======
|
426 |
+
# generation task specific arguments
|
427 |
+
# add arguments for maximal length of text output
|
428 |
+
validator.add_argument(
|
429 |
+
"max_len",
|
430 |
+
type=int,
|
431 |
+
help="Maximal length of text output.",
|
432 |
+
)
|
433 |
+
# add arguments for minimal length of text output
|
434 |
+
validator.add_argument(
|
435 |
+
"min_len",
|
436 |
+
type=int,
|
437 |
+
help="Minimal length of text output.",
|
438 |
+
)
|
439 |
+
# add arguments number of beams
|
440 |
+
validator.add_argument(
|
441 |
+
"num_beams",
|
442 |
+
type=int,
|
443 |
+
help="Number of beams used for beam search.",
|
444 |
+
)
|
445 |
+
|
446 |
+
# vqa task specific arguments
|
447 |
+
# add arguments for number of answer candidates
|
448 |
+
validator.add_argument(
|
449 |
+
"num_ans_candidates",
|
450 |
+
type=int,
|
451 |
+
help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""",
|
452 |
+
)
|
453 |
+
# add arguments for inference method
|
454 |
+
validator.add_argument(
|
455 |
+
"inference_method",
|
456 |
+
type=str,
|
457 |
+
choices=["genearte", "rank"],
|
458 |
+
help="""Inference method to use for question answering. If rank, requires a answer list.""",
|
459 |
+
)
|
460 |
+
|
461 |
+
# ====== model specific ======
|
462 |
+
validator.add_argument(
|
463 |
+
"k_test",
|
464 |
+
type=int,
|
465 |
+
help="Number of top k most similar samples from ITC/VTC selection to be tested.",
|
466 |
+
)
|
467 |
+
|
468 |
+
return validator
|
video_llama/common/dist_utils.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import datetime
|
9 |
+
import functools
|
10 |
+
import os
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.distributed as dist
|
14 |
+
import timm.models.hub as timm_hub
|
15 |
+
|
16 |
+
|
17 |
+
def setup_for_distributed(is_master):
|
18 |
+
"""
|
19 |
+
This function disables printing when not in master process
|
20 |
+
"""
|
21 |
+
import builtins as __builtin__
|
22 |
+
|
23 |
+
builtin_print = __builtin__.print
|
24 |
+
|
25 |
+
def print(*args, **kwargs):
|
26 |
+
force = kwargs.pop("force", False)
|
27 |
+
if is_master or force:
|
28 |
+
builtin_print(*args, **kwargs)
|
29 |
+
|
30 |
+
__builtin__.print = print
|
31 |
+
|
32 |
+
|
33 |
+
def is_dist_avail_and_initialized():
|
34 |
+
if not dist.is_available():
|
35 |
+
return False
|
36 |
+
if not dist.is_initialized():
|
37 |
+
return False
|
38 |
+
return True
|
39 |
+
|
40 |
+
|
41 |
+
def get_world_size():
|
42 |
+
if not is_dist_avail_and_initialized():
|
43 |
+
return 1
|
44 |
+
return dist.get_world_size()
|
45 |
+
|
46 |
+
|
47 |
+
def get_rank():
|
48 |
+
if not is_dist_avail_and_initialized():
|
49 |
+
return 0
|
50 |
+
return dist.get_rank()
|
51 |
+
|
52 |
+
|
53 |
+
def is_main_process():
|
54 |
+
return get_rank() == 0
|
55 |
+
|
56 |
+
|
57 |
+
def init_distributed_mode(args):
|
58 |
+
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
|
59 |
+
args.rank = int(os.environ["RANK"])
|
60 |
+
args.world_size = int(os.environ["WORLD_SIZE"])
|
61 |
+
args.gpu = int(os.environ["LOCAL_RANK"])
|
62 |
+
elif "SLURM_PROCID" in os.environ:
|
63 |
+
args.rank = int(os.environ["SLURM_PROCID"])
|
64 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
65 |
+
else:
|
66 |
+
print("Not using distributed mode")
|
67 |
+
args.distributed = False
|
68 |
+
return
|
69 |
+
|
70 |
+
args.distributed = True
|
71 |
+
|
72 |
+
torch.cuda.set_device(args.gpu)
|
73 |
+
args.dist_backend = "nccl"
|
74 |
+
print(
|
75 |
+
"| distributed init (rank {}, world {}): {}".format(
|
76 |
+
args.rank, args.world_size, args.dist_url
|
77 |
+
),
|
78 |
+
flush=True,
|
79 |
+
)
|
80 |
+
torch.distributed.init_process_group(
|
81 |
+
backend=args.dist_backend,
|
82 |
+
init_method=args.dist_url,
|
83 |
+
world_size=args.world_size,
|
84 |
+
rank=args.rank,
|
85 |
+
timeout=datetime.timedelta(
|
86 |
+
days=365
|
87 |
+
), # allow auto-downloading and de-compressing
|
88 |
+
)
|
89 |
+
torch.distributed.barrier()
|
90 |
+
setup_for_distributed(args.rank == 0)
|
91 |
+
|
92 |
+
|
93 |
+
def get_dist_info():
|
94 |
+
if torch.__version__ < "1.0":
|
95 |
+
initialized = dist._initialized
|
96 |
+
else:
|
97 |
+
initialized = dist.is_initialized()
|
98 |
+
if initialized:
|
99 |
+
rank = dist.get_rank()
|
100 |
+
world_size = dist.get_world_size()
|
101 |
+
else: # non-distributed training
|
102 |
+
rank = 0
|
103 |
+
world_size = 1
|
104 |
+
return rank, world_size
|
105 |
+
|
106 |
+
|
107 |
+
def main_process(func):
|
108 |
+
@functools.wraps(func)
|
109 |
+
def wrapper(*args, **kwargs):
|
110 |
+
rank, _ = get_dist_info()
|
111 |
+
if rank == 0:
|
112 |
+
return func(*args, **kwargs)
|
113 |
+
|
114 |
+
return wrapper
|
115 |
+
|
116 |
+
|
117 |
+
def download_cached_file(url, check_hash=True, progress=False):
|
118 |
+
"""
|
119 |
+
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
|
120 |
+
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
|
121 |
+
"""
|
122 |
+
|
123 |
+
def get_cached_file_path():
|
124 |
+
# a hack to sync the file path across processes
|
125 |
+
parts = torch.hub.urlparse(url)
|
126 |
+
filename = os.path.basename(parts.path)
|
127 |
+
cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
|
128 |
+
|
129 |
+
return cached_file
|
130 |
+
|
131 |
+
if is_main_process():
|
132 |
+
timm_hub.download_cached_file(url, check_hash, progress)
|
133 |
+
|
134 |
+
if is_dist_avail_and_initialized():
|
135 |
+
dist.barrier()
|
136 |
+
|
137 |
+
return get_cached_file_path()
|
video_llama/common/gradcam.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from matplotlib import pyplot as plt
|
3 |
+
from scipy.ndimage import filters
|
4 |
+
from skimage import transform as skimage_transform
|
5 |
+
|
6 |
+
|
7 |
+
def getAttMap(img, attMap, blur=True, overlap=True):
|
8 |
+
attMap -= attMap.min()
|
9 |
+
if attMap.max() > 0:
|
10 |
+
attMap /= attMap.max()
|
11 |
+
attMap = skimage_transform.resize(attMap, (img.shape[:2]), order=3, mode="constant")
|
12 |
+
if blur:
|
13 |
+
attMap = filters.gaussian_filter(attMap, 0.02 * max(img.shape[:2]))
|
14 |
+
attMap -= attMap.min()
|
15 |
+
attMap /= attMap.max()
|
16 |
+
cmap = plt.get_cmap("jet")
|
17 |
+
attMapV = cmap(attMap)
|
18 |
+
attMapV = np.delete(attMapV, 3, 2)
|
19 |
+
if overlap:
|
20 |
+
attMap = (
|
21 |
+
1 * (1 - attMap**0.7).reshape(attMap.shape + (1,)) * img
|
22 |
+
+ (attMap**0.7).reshape(attMap.shape + (1,)) * attMapV
|
23 |
+
)
|
24 |
+
return attMap
|
video_llama/common/logger.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import datetime
|
9 |
+
import logging
|
10 |
+
import time
|
11 |
+
from collections import defaultdict, deque
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.distributed as dist
|
15 |
+
|
16 |
+
from video_llama.common import dist_utils
|
17 |
+
|
18 |
+
|
19 |
+
class SmoothedValue(object):
|
20 |
+
"""Track a series of values and provide access to smoothed values over a
|
21 |
+
window or the global series average.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, window_size=20, fmt=None):
|
25 |
+
if fmt is None:
|
26 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
27 |
+
self.deque = deque(maxlen=window_size)
|
28 |
+
self.total = 0.0
|
29 |
+
self.count = 0
|
30 |
+
self.fmt = fmt
|
31 |
+
|
32 |
+
def update(self, value, n=1):
|
33 |
+
self.deque.append(value)
|
34 |
+
self.count += n
|
35 |
+
self.total += value * n
|
36 |
+
|
37 |
+
def synchronize_between_processes(self):
|
38 |
+
"""
|
39 |
+
Warning: does not synchronize the deque!
|
40 |
+
"""
|
41 |
+
if not dist_utils.is_dist_avail_and_initialized():
|
42 |
+
return
|
43 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
44 |
+
dist.barrier()
|
45 |
+
dist.all_reduce(t)
|
46 |
+
t = t.tolist()
|
47 |
+
self.count = int(t[0])
|
48 |
+
self.total = t[1]
|
49 |
+
|
50 |
+
@property
|
51 |
+
def median(self):
|
52 |
+
d = torch.tensor(list(self.deque))
|
53 |
+
return d.median().item()
|
54 |
+
|
55 |
+
@property
|
56 |
+
def avg(self):
|
57 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
58 |
+
return d.mean().item()
|
59 |
+
|
60 |
+
@property
|
61 |
+
def global_avg(self):
|
62 |
+
return self.total / self.count
|
63 |
+
|
64 |
+
@property
|
65 |
+
def max(self):
|
66 |
+
return max(self.deque)
|
67 |
+
|
68 |
+
@property
|
69 |
+
def value(self):
|
70 |
+
return self.deque[-1]
|
71 |
+
|
72 |
+
def __str__(self):
|
73 |
+
return self.fmt.format(
|
74 |
+
median=self.median,
|
75 |
+
avg=self.avg,
|
76 |
+
global_avg=self.global_avg,
|
77 |
+
max=self.max,
|
78 |
+
value=self.value,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
class MetricLogger(object):
|
83 |
+
def __init__(self, delimiter="\t"):
|
84 |
+
self.meters = defaultdict(SmoothedValue)
|
85 |
+
self.delimiter = delimiter
|
86 |
+
|
87 |
+
def update(self, **kwargs):
|
88 |
+
for k, v in kwargs.items():
|
89 |
+
if isinstance(v, torch.Tensor):
|
90 |
+
v = v.item()
|
91 |
+
assert isinstance(v, (float, int))
|
92 |
+
self.meters[k].update(v)
|
93 |
+
|
94 |
+
def __getattr__(self, attr):
|
95 |
+
if attr in self.meters:
|
96 |
+
return self.meters[attr]
|
97 |
+
if attr in self.__dict__:
|
98 |
+
return self.__dict__[attr]
|
99 |
+
raise AttributeError(
|
100 |
+
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
|
101 |
+
)
|
102 |
+
|
103 |
+
def __str__(self):
|
104 |
+
loss_str = []
|
105 |
+
for name, meter in self.meters.items():
|
106 |
+
loss_str.append("{}: {}".format(name, str(meter)))
|
107 |
+
return self.delimiter.join(loss_str)
|
108 |
+
|
109 |
+
def global_avg(self):
|
110 |
+
loss_str = []
|
111 |
+
for name, meter in self.meters.items():
|
112 |
+
loss_str.append("{}: {:.4f}".format(name, meter.global_avg))
|
113 |
+
return self.delimiter.join(loss_str)
|
114 |
+
|
115 |
+
def synchronize_between_processes(self):
|
116 |
+
for meter in self.meters.values():
|
117 |
+
meter.synchronize_between_processes()
|
118 |
+
|
119 |
+
def add_meter(self, name, meter):
|
120 |
+
self.meters[name] = meter
|
121 |
+
|
122 |
+
def log_every(self, iterable, print_freq, header=None):
|
123 |
+
i = 0
|
124 |
+
if not header:
|
125 |
+
header = ""
|
126 |
+
start_time = time.time()
|
127 |
+
end = time.time()
|
128 |
+
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
129 |
+
data_time = SmoothedValue(fmt="{avg:.4f}")
|
130 |
+
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
131 |
+
log_msg = [
|
132 |
+
header,
|
133 |
+
"[{0" + space_fmt + "}/{1}]",
|
134 |
+
"eta: {eta}",
|
135 |
+
"{meters}",
|
136 |
+
"time: {time}",
|
137 |
+
"data: {data}",
|
138 |
+
]
|
139 |
+
if torch.cuda.is_available():
|
140 |
+
log_msg.append("max mem: {memory:.0f}")
|
141 |
+
log_msg = self.delimiter.join(log_msg)
|
142 |
+
MB = 1024.0 * 1024.0
|
143 |
+
for obj in iterable:
|
144 |
+
data_time.update(time.time() - end)
|
145 |
+
yield obj
|
146 |
+
iter_time.update(time.time() - end)
|
147 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
148 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
149 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
150 |
+
if torch.cuda.is_available():
|
151 |
+
print(
|
152 |
+
log_msg.format(
|
153 |
+
i,
|
154 |
+
len(iterable),
|
155 |
+
eta=eta_string,
|
156 |
+
meters=str(self),
|
157 |
+
time=str(iter_time),
|
158 |
+
data=str(data_time),
|
159 |
+
memory=torch.cuda.max_memory_allocated() / MB,
|
160 |
+
)
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
print(
|
164 |
+
log_msg.format(
|
165 |
+
i,
|
166 |
+
len(iterable),
|
167 |
+
eta=eta_string,
|
168 |
+
meters=str(self),
|
169 |
+
time=str(iter_time),
|
170 |
+
data=str(data_time),
|
171 |
+
)
|
172 |
+
)
|
173 |
+
i += 1
|
174 |
+
end = time.time()
|
175 |
+
total_time = time.time() - start_time
|
176 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
177 |
+
print(
|
178 |
+
"{} Total time: {} ({:.4f} s / it)".format(
|
179 |
+
header, total_time_str, total_time / len(iterable)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
class AttrDict(dict):
|
185 |
+
def __init__(self, *args, **kwargs):
|
186 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
187 |
+
self.__dict__ = self
|
188 |
+
|
189 |
+
|
190 |
+
def setup_logger():
|
191 |
+
logging.basicConfig(
|
192 |
+
level=logging.INFO if dist_utils.is_main_process() else logging.WARN,
|
193 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
194 |
+
handlers=[logging.StreamHandler()],
|
195 |
+
)
|
video_llama/common/optims.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import math
|
9 |
+
|
10 |
+
from video_llama.common.registry import registry
|
11 |
+
|
12 |
+
|
13 |
+
@registry.register_lr_scheduler("linear_warmup_step_lr")
|
14 |
+
class LinearWarmupStepLRScheduler:
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
optimizer,
|
18 |
+
max_epoch,
|
19 |
+
min_lr,
|
20 |
+
init_lr,
|
21 |
+
decay_rate=1,
|
22 |
+
warmup_start_lr=-1,
|
23 |
+
warmup_steps=0,
|
24 |
+
**kwargs
|
25 |
+
):
|
26 |
+
self.optimizer = optimizer
|
27 |
+
|
28 |
+
self.max_epoch = max_epoch
|
29 |
+
self.min_lr = min_lr
|
30 |
+
|
31 |
+
self.decay_rate = decay_rate
|
32 |
+
|
33 |
+
self.init_lr = init_lr
|
34 |
+
self.warmup_steps = warmup_steps
|
35 |
+
self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr
|
36 |
+
|
37 |
+
def step(self, cur_epoch, cur_step):
|
38 |
+
if cur_epoch == 0:
|
39 |
+
warmup_lr_schedule(
|
40 |
+
step=cur_step,
|
41 |
+
optimizer=self.optimizer,
|
42 |
+
max_step=self.warmup_steps,
|
43 |
+
init_lr=self.warmup_start_lr,
|
44 |
+
max_lr=self.init_lr,
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
step_lr_schedule(
|
48 |
+
epoch=cur_epoch,
|
49 |
+
optimizer=self.optimizer,
|
50 |
+
init_lr=self.init_lr,
|
51 |
+
min_lr=self.min_lr,
|
52 |
+
decay_rate=self.decay_rate,
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
@registry.register_lr_scheduler("linear_warmup_cosine_lr")
|
57 |
+
class LinearWarmupCosineLRScheduler:
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
optimizer,
|
61 |
+
max_epoch,
|
62 |
+
iters_per_epoch,
|
63 |
+
min_lr,
|
64 |
+
init_lr,
|
65 |
+
warmup_steps=0,
|
66 |
+
warmup_start_lr=-1,
|
67 |
+
**kwargs
|
68 |
+
):
|
69 |
+
self.optimizer = optimizer
|
70 |
+
|
71 |
+
self.max_epoch = max_epoch
|
72 |
+
self.iters_per_epoch = iters_per_epoch
|
73 |
+
self.min_lr = min_lr
|
74 |
+
|
75 |
+
self.init_lr = init_lr
|
76 |
+
self.warmup_steps = warmup_steps
|
77 |
+
self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr
|
78 |
+
|
79 |
+
def step(self, cur_epoch, cur_step):
|
80 |
+
total_cur_step = cur_epoch * self.iters_per_epoch + cur_step
|
81 |
+
if total_cur_step < self.warmup_steps:
|
82 |
+
warmup_lr_schedule(
|
83 |
+
step=cur_step,
|
84 |
+
optimizer=self.optimizer,
|
85 |
+
max_step=self.warmup_steps,
|
86 |
+
init_lr=self.warmup_start_lr,
|
87 |
+
max_lr=self.init_lr,
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
cosine_lr_schedule(
|
91 |
+
epoch=total_cur_step,
|
92 |
+
optimizer=self.optimizer,
|
93 |
+
max_epoch=self.max_epoch * self.iters_per_epoch,
|
94 |
+
init_lr=self.init_lr,
|
95 |
+
min_lr=self.min_lr,
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
|
100 |
+
"""Decay the learning rate"""
|
101 |
+
lr = (init_lr - min_lr) * 0.5 * (
|
102 |
+
1.0 + math.cos(math.pi * epoch / max_epoch)
|
103 |
+
) + min_lr
|
104 |
+
for param_group in optimizer.param_groups:
|
105 |
+
param_group["lr"] = lr
|
106 |
+
|
107 |
+
|
108 |
+
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
|
109 |
+
"""Warmup the learning rate"""
|
110 |
+
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max(max_step, 1))
|
111 |
+
for param_group in optimizer.param_groups:
|
112 |
+
param_group["lr"] = lr
|
113 |
+
|
114 |
+
|
115 |
+
def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
|
116 |
+
"""Decay the learning rate"""
|
117 |
+
lr = max(min_lr, init_lr * (decay_rate**epoch))
|
118 |
+
for param_group in optimizer.param_groups:
|
119 |
+
param_group["lr"] = lr
|
video_llama/common/registry.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
class Registry:
|
10 |
+
mapping = {
|
11 |
+
"builder_name_mapping": {},
|
12 |
+
"task_name_mapping": {},
|
13 |
+
"processor_name_mapping": {},
|
14 |
+
"model_name_mapping": {},
|
15 |
+
"lr_scheduler_name_mapping": {},
|
16 |
+
"runner_name_mapping": {},
|
17 |
+
"state": {},
|
18 |
+
"paths": {},
|
19 |
+
}
|
20 |
+
|
21 |
+
@classmethod
|
22 |
+
def register_builder(cls, name):
|
23 |
+
r"""Register a dataset builder to registry with key 'name'
|
24 |
+
|
25 |
+
Args:
|
26 |
+
name: Key with which the builder will be registered.
|
27 |
+
|
28 |
+
Usage:
|
29 |
+
|
30 |
+
from video_llama.common.registry import registry
|
31 |
+
from video_llama.datasets.base_dataset_builder import BaseDatasetBuilder
|
32 |
+
"""
|
33 |
+
|
34 |
+
def wrap(builder_cls):
|
35 |
+
from video_llama.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
36 |
+
|
37 |
+
assert issubclass(
|
38 |
+
builder_cls, BaseDatasetBuilder
|
39 |
+
), "All builders must inherit BaseDatasetBuilder class, found {}".format(
|
40 |
+
builder_cls
|
41 |
+
)
|
42 |
+
if name in cls.mapping["builder_name_mapping"]:
|
43 |
+
raise KeyError(
|
44 |
+
"Name '{}' already registered for {}.".format(
|
45 |
+
name, cls.mapping["builder_name_mapping"][name]
|
46 |
+
)
|
47 |
+
)
|
48 |
+
cls.mapping["builder_name_mapping"][name] = builder_cls
|
49 |
+
return builder_cls
|
50 |
+
|
51 |
+
return wrap
|
52 |
+
|
53 |
+
@classmethod
|
54 |
+
def register_task(cls, name):
|
55 |
+
r"""Register a task to registry with key 'name'
|
56 |
+
|
57 |
+
Args:
|
58 |
+
name: Key with which the task will be registered.
|
59 |
+
|
60 |
+
Usage:
|
61 |
+
|
62 |
+
from video_llama.common.registry import registry
|
63 |
+
"""
|
64 |
+
|
65 |
+
def wrap(task_cls):
|
66 |
+
from video_llama.tasks.base_task import BaseTask
|
67 |
+
|
68 |
+
assert issubclass(
|
69 |
+
task_cls, BaseTask
|
70 |
+
), "All tasks must inherit BaseTask class"
|
71 |
+
if name in cls.mapping["task_name_mapping"]:
|
72 |
+
raise KeyError(
|
73 |
+
"Name '{}' already registered for {}.".format(
|
74 |
+
name, cls.mapping["task_name_mapping"][name]
|
75 |
+
)
|
76 |
+
)
|
77 |
+
cls.mapping["task_name_mapping"][name] = task_cls
|
78 |
+
return task_cls
|
79 |
+
|
80 |
+
return wrap
|
81 |
+
|
82 |
+
@classmethod
|
83 |
+
def register_model(cls, name):
|
84 |
+
r"""Register a task to registry with key 'name'
|
85 |
+
|
86 |
+
Args:
|
87 |
+
name: Key with which the task will be registered.
|
88 |
+
|
89 |
+
Usage:
|
90 |
+
|
91 |
+
from video_llama.common.registry import registry
|
92 |
+
"""
|
93 |
+
|
94 |
+
def wrap(model_cls):
|
95 |
+
from video_llama.models import BaseModel
|
96 |
+
|
97 |
+
assert issubclass(
|
98 |
+
model_cls, BaseModel
|
99 |
+
), "All models must inherit BaseModel class"
|
100 |
+
if name in cls.mapping["model_name_mapping"]:
|
101 |
+
raise KeyError(
|
102 |
+
"Name '{}' already registered for {}.".format(
|
103 |
+
name, cls.mapping["model_name_mapping"][name]
|
104 |
+
)
|
105 |
+
)
|
106 |
+
cls.mapping["model_name_mapping"][name] = model_cls
|
107 |
+
return model_cls
|
108 |
+
|
109 |
+
return wrap
|
110 |
+
|
111 |
+
@classmethod
|
112 |
+
def register_processor(cls, name):
|
113 |
+
r"""Register a processor to registry with key 'name'
|
114 |
+
|
115 |
+
Args:
|
116 |
+
name: Key with which the task will be registered.
|
117 |
+
|
118 |
+
Usage:
|
119 |
+
|
120 |
+
from video_llama.common.registry import registry
|
121 |
+
"""
|
122 |
+
|
123 |
+
def wrap(processor_cls):
|
124 |
+
from video_llama.processors import BaseProcessor
|
125 |
+
|
126 |
+
assert issubclass(
|
127 |
+
processor_cls, BaseProcessor
|
128 |
+
), "All processors must inherit BaseProcessor class"
|
129 |
+
if name in cls.mapping["processor_name_mapping"]:
|
130 |
+
raise KeyError(
|
131 |
+
"Name '{}' already registered for {}.".format(
|
132 |
+
name, cls.mapping["processor_name_mapping"][name]
|
133 |
+
)
|
134 |
+
)
|
135 |
+
cls.mapping["processor_name_mapping"][name] = processor_cls
|
136 |
+
return processor_cls
|
137 |
+
|
138 |
+
return wrap
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def register_lr_scheduler(cls, name):
|
142 |
+
r"""Register a model to registry with key 'name'
|
143 |
+
|
144 |
+
Args:
|
145 |
+
name: Key with which the task will be registered.
|
146 |
+
|
147 |
+
Usage:
|
148 |
+
|
149 |
+
from video_llama.common.registry import registry
|
150 |
+
"""
|
151 |
+
|
152 |
+
def wrap(lr_sched_cls):
|
153 |
+
if name in cls.mapping["lr_scheduler_name_mapping"]:
|
154 |
+
raise KeyError(
|
155 |
+
"Name '{}' already registered for {}.".format(
|
156 |
+
name, cls.mapping["lr_scheduler_name_mapping"][name]
|
157 |
+
)
|
158 |
+
)
|
159 |
+
cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls
|
160 |
+
return lr_sched_cls
|
161 |
+
|
162 |
+
return wrap
|
163 |
+
|
164 |
+
@classmethod
|
165 |
+
def register_runner(cls, name):
|
166 |
+
r"""Register a model to registry with key 'name'
|
167 |
+
|
168 |
+
Args:
|
169 |
+
name: Key with which the task will be registered.
|
170 |
+
|
171 |
+
Usage:
|
172 |
+
|
173 |
+
from video_llama.common.registry import registry
|
174 |
+
"""
|
175 |
+
|
176 |
+
def wrap(runner_cls):
|
177 |
+
if name in cls.mapping["runner_name_mapping"]:
|
178 |
+
raise KeyError(
|
179 |
+
"Name '{}' already registered for {}.".format(
|
180 |
+
name, cls.mapping["runner_name_mapping"][name]
|
181 |
+
)
|
182 |
+
)
|
183 |
+
cls.mapping["runner_name_mapping"][name] = runner_cls
|
184 |
+
return runner_cls
|
185 |
+
|
186 |
+
return wrap
|
187 |
+
|
188 |
+
@classmethod
|
189 |
+
def register_path(cls, name, path):
|
190 |
+
r"""Register a path to registry with key 'name'
|
191 |
+
|
192 |
+
Args:
|
193 |
+
name: Key with which the path will be registered.
|
194 |
+
|
195 |
+
Usage:
|
196 |
+
|
197 |
+
from video_llama.common.registry import registry
|
198 |
+
"""
|
199 |
+
assert isinstance(path, str), "All path must be str."
|
200 |
+
if name in cls.mapping["paths"]:
|
201 |
+
raise KeyError("Name '{}' already registered.".format(name))
|
202 |
+
cls.mapping["paths"][name] = path
|
203 |
+
|
204 |
+
@classmethod
|
205 |
+
def register(cls, name, obj):
|
206 |
+
r"""Register an item to registry with key 'name'
|
207 |
+
|
208 |
+
Args:
|
209 |
+
name: Key with which the item will be registered.
|
210 |
+
|
211 |
+
Usage::
|
212 |
+
|
213 |
+
from video_llama.common.registry import registry
|
214 |
+
|
215 |
+
registry.register("config", {})
|
216 |
+
"""
|
217 |
+
path = name.split(".")
|
218 |
+
current = cls.mapping["state"]
|
219 |
+
|
220 |
+
for part in path[:-1]:
|
221 |
+
if part not in current:
|
222 |
+
current[part] = {}
|
223 |
+
current = current[part]
|
224 |
+
|
225 |
+
current[path[-1]] = obj
|
226 |
+
|
227 |
+
# @classmethod
|
228 |
+
# def get_trainer_class(cls, name):
|
229 |
+
# return cls.mapping["trainer_name_mapping"].get(name, None)
|
230 |
+
|
231 |
+
@classmethod
|
232 |
+
def get_builder_class(cls, name):
|
233 |
+
return cls.mapping["builder_name_mapping"].get(name, None)
|
234 |
+
|
235 |
+
@classmethod
|
236 |
+
def get_model_class(cls, name):
|
237 |
+
return cls.mapping["model_name_mapping"].get(name, None)
|
238 |
+
|
239 |
+
@classmethod
|
240 |
+
def get_task_class(cls, name):
|
241 |
+
return cls.mapping["task_name_mapping"].get(name, None)
|
242 |
+
|
243 |
+
@classmethod
|
244 |
+
def get_processor_class(cls, name):
|
245 |
+
return cls.mapping["processor_name_mapping"].get(name, None)
|
246 |
+
|
247 |
+
@classmethod
|
248 |
+
def get_lr_scheduler_class(cls, name):
|
249 |
+
return cls.mapping["lr_scheduler_name_mapping"].get(name, None)
|
250 |
+
|
251 |
+
@classmethod
|
252 |
+
def get_runner_class(cls, name):
|
253 |
+
return cls.mapping["runner_name_mapping"].get(name, None)
|
254 |
+
|
255 |
+
@classmethod
|
256 |
+
def list_runners(cls):
|
257 |
+
return sorted(cls.mapping["runner_name_mapping"].keys())
|
258 |
+
|
259 |
+
@classmethod
|
260 |
+
def list_models(cls):
|
261 |
+
return sorted(cls.mapping["model_name_mapping"].keys())
|
262 |
+
|
263 |
+
@classmethod
|
264 |
+
def list_tasks(cls):
|
265 |
+
return sorted(cls.mapping["task_name_mapping"].keys())
|
266 |
+
|
267 |
+
@classmethod
|
268 |
+
def list_processors(cls):
|
269 |
+
return sorted(cls.mapping["processor_name_mapping"].keys())
|
270 |
+
|
271 |
+
@classmethod
|
272 |
+
def list_lr_schedulers(cls):
|
273 |
+
return sorted(cls.mapping["lr_scheduler_name_mapping"].keys())
|
274 |
+
|
275 |
+
@classmethod
|
276 |
+
def list_datasets(cls):
|
277 |
+
return sorted(cls.mapping["builder_name_mapping"].keys())
|
278 |
+
|
279 |
+
@classmethod
|
280 |
+
def get_path(cls, name):
|
281 |
+
return cls.mapping["paths"].get(name, None)
|
282 |
+
|
283 |
+
@classmethod
|
284 |
+
def get(cls, name, default=None, no_warning=False):
|
285 |
+
r"""Get an item from registry with key 'name'
|
286 |
+
|
287 |
+
Args:
|
288 |
+
name (string): Key whose value needs to be retrieved.
|
289 |
+
default: If passed and key is not in registry, default value will
|
290 |
+
be returned with a warning. Default: None
|
291 |
+
no_warning (bool): If passed as True, warning when key doesn't exist
|
292 |
+
will not be generated. Useful for MMF's
|
293 |
+
internal operations. Default: False
|
294 |
+
"""
|
295 |
+
original_name = name
|
296 |
+
name = name.split(".")
|
297 |
+
value = cls.mapping["state"]
|
298 |
+
for subname in name:
|
299 |
+
value = value.get(subname, default)
|
300 |
+
if value is default:
|
301 |
+
break
|
302 |
+
|
303 |
+
if (
|
304 |
+
"writer" in cls.mapping["state"]
|
305 |
+
and value == default
|
306 |
+
and no_warning is False
|
307 |
+
):
|
308 |
+
cls.mapping["state"]["writer"].warning(
|
309 |
+
"Key {} is not present in registry, returning default value "
|
310 |
+
"of {}".format(original_name, default)
|
311 |
+
)
|
312 |
+
return value
|
313 |
+
|
314 |
+
@classmethod
|
315 |
+
def unregister(cls, name):
|
316 |
+
r"""Remove an item from registry with key 'name'
|
317 |
+
|
318 |
+
Args:
|
319 |
+
name: Key which needs to be removed.
|
320 |
+
Usage::
|
321 |
+
|
322 |
+
from mmf.common.registry import registry
|
323 |
+
|
324 |
+
config = registry.unregister("config")
|
325 |
+
"""
|
326 |
+
return cls.mapping["state"].pop(name, None)
|
327 |
+
|
328 |
+
|
329 |
+
registry = Registry()
|
video_llama/common/utils.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import io
|
9 |
+
import json
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
import pickle
|
13 |
+
import re
|
14 |
+
import shutil
|
15 |
+
import urllib
|
16 |
+
import urllib.error
|
17 |
+
import urllib.request
|
18 |
+
from typing import Optional
|
19 |
+
from urllib.parse import urlparse
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import pandas as pd
|
23 |
+
import yaml
|
24 |
+
from iopath.common.download import download
|
25 |
+
from iopath.common.file_io import file_lock, g_pathmgr
|
26 |
+
from video_llama.common.registry import registry
|
27 |
+
from torch.utils.model_zoo import tqdm
|
28 |
+
from torchvision.datasets.utils import (
|
29 |
+
check_integrity,
|
30 |
+
download_file_from_google_drive,
|
31 |
+
extract_archive,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
def now():
|
36 |
+
from datetime import datetime
|
37 |
+
|
38 |
+
return datetime.now().strftime("%Y%m%d%H%M")[:-1]
|
39 |
+
|
40 |
+
|
41 |
+
def is_url(url_or_filename):
|
42 |
+
parsed = urlparse(url_or_filename)
|
43 |
+
return parsed.scheme in ("http", "https")
|
44 |
+
|
45 |
+
|
46 |
+
def get_cache_path(rel_path):
|
47 |
+
return os.path.expanduser(os.path.join(registry.get_path("cache_root"), rel_path))
|
48 |
+
|
49 |
+
|
50 |
+
def get_abs_path(rel_path):
|
51 |
+
return os.path.join(registry.get_path("library_root"), rel_path)
|
52 |
+
|
53 |
+
|
54 |
+
def load_json(filename):
|
55 |
+
with open(filename, "r") as f:
|
56 |
+
return json.load(f)
|
57 |
+
|
58 |
+
|
59 |
+
# The following are adapted from torchvision and vissl
|
60 |
+
# torchvision: https://github.com/pytorch/vision
|
61 |
+
# vissl: https://github.com/facebookresearch/vissl/blob/main/vissl/utils/download.py
|
62 |
+
|
63 |
+
|
64 |
+
def makedir(dir_path):
|
65 |
+
"""
|
66 |
+
Create the directory if it does not exist.
|
67 |
+
"""
|
68 |
+
is_success = False
|
69 |
+
try:
|
70 |
+
if not g_pathmgr.exists(dir_path):
|
71 |
+
g_pathmgr.mkdirs(dir_path)
|
72 |
+
is_success = True
|
73 |
+
except BaseException:
|
74 |
+
print(f"Error creating directory: {dir_path}")
|
75 |
+
return is_success
|
76 |
+
|
77 |
+
|
78 |
+
def get_redirected_url(url: str):
|
79 |
+
"""
|
80 |
+
Given a URL, returns the URL it redirects to or the
|
81 |
+
original URL in case of no indirection
|
82 |
+
"""
|
83 |
+
import requests
|
84 |
+
|
85 |
+
with requests.Session() as session:
|
86 |
+
with session.get(url, stream=True, allow_redirects=True) as response:
|
87 |
+
if response.history:
|
88 |
+
return response.url
|
89 |
+
else:
|
90 |
+
return url
|
91 |
+
|
92 |
+
|
93 |
+
def to_google_drive_download_url(view_url: str) -> str:
|
94 |
+
"""
|
95 |
+
Utility function to transform a view URL of google drive
|
96 |
+
to a download URL for google drive
|
97 |
+
Example input:
|
98 |
+
https://drive.google.com/file/d/137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp/view
|
99 |
+
Example output:
|
100 |
+
https://drive.google.com/uc?export=download&id=137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp
|
101 |
+
"""
|
102 |
+
splits = view_url.split("/")
|
103 |
+
assert splits[-1] == "view"
|
104 |
+
file_id = splits[-2]
|
105 |
+
return f"https://drive.google.com/uc?export=download&id={file_id}"
|
106 |
+
|
107 |
+
|
108 |
+
def download_google_drive_url(url: str, output_path: str, output_file_name: str):
|
109 |
+
"""
|
110 |
+
Download a file from google drive
|
111 |
+
Downloading an URL from google drive requires confirmation when
|
112 |
+
the file of the size is too big (google drive notifies that
|
113 |
+
anti-viral checks cannot be performed on such files)
|
114 |
+
"""
|
115 |
+
import requests
|
116 |
+
|
117 |
+
with requests.Session() as session:
|
118 |
+
|
119 |
+
# First get the confirmation token and append it to the URL
|
120 |
+
with session.get(url, stream=True, allow_redirects=True) as response:
|
121 |
+
for k, v in response.cookies.items():
|
122 |
+
if k.startswith("download_warning"):
|
123 |
+
url = url + "&confirm=" + v
|
124 |
+
|
125 |
+
# Then download the content of the file
|
126 |
+
with session.get(url, stream=True, verify=True) as response:
|
127 |
+
makedir(output_path)
|
128 |
+
path = os.path.join(output_path, output_file_name)
|
129 |
+
total_size = int(response.headers.get("Content-length", 0))
|
130 |
+
with open(path, "wb") as file:
|
131 |
+
from tqdm import tqdm
|
132 |
+
|
133 |
+
with tqdm(total=total_size) as progress_bar:
|
134 |
+
for block in response.iter_content(
|
135 |
+
chunk_size=io.DEFAULT_BUFFER_SIZE
|
136 |
+
):
|
137 |
+
file.write(block)
|
138 |
+
progress_bar.update(len(block))
|
139 |
+
|
140 |
+
|
141 |
+
def _get_google_drive_file_id(url: str) -> Optional[str]:
|
142 |
+
parts = urlparse(url)
|
143 |
+
|
144 |
+
if re.match(r"(drive|docs)[.]google[.]com", parts.netloc) is None:
|
145 |
+
return None
|
146 |
+
|
147 |
+
match = re.match(r"/file/d/(?P<id>[^/]*)", parts.path)
|
148 |
+
if match is None:
|
149 |
+
return None
|
150 |
+
|
151 |
+
return match.group("id")
|
152 |
+
|
153 |
+
|
154 |
+
def _urlretrieve(url: str, filename: str, chunk_size: int = 1024) -> None:
|
155 |
+
with open(filename, "wb") as fh:
|
156 |
+
with urllib.request.urlopen(
|
157 |
+
urllib.request.Request(url, headers={"User-Agent": "vissl"})
|
158 |
+
) as response:
|
159 |
+
with tqdm(total=response.length) as pbar:
|
160 |
+
for chunk in iter(lambda: response.read(chunk_size), ""):
|
161 |
+
if not chunk:
|
162 |
+
break
|
163 |
+
pbar.update(chunk_size)
|
164 |
+
fh.write(chunk)
|
165 |
+
|
166 |
+
|
167 |
+
def download_url(
|
168 |
+
url: str,
|
169 |
+
root: str,
|
170 |
+
filename: Optional[str] = None,
|
171 |
+
md5: Optional[str] = None,
|
172 |
+
) -> None:
|
173 |
+
"""Download a file from a url and place it in root.
|
174 |
+
Args:
|
175 |
+
url (str): URL to download file from
|
176 |
+
root (str): Directory to place downloaded file in
|
177 |
+
filename (str, optional): Name to save the file under.
|
178 |
+
If None, use the basename of the URL.
|
179 |
+
md5 (str, optional): MD5 checksum of the download. If None, do not check
|
180 |
+
"""
|
181 |
+
root = os.path.expanduser(root)
|
182 |
+
if not filename:
|
183 |
+
filename = os.path.basename(url)
|
184 |
+
fpath = os.path.join(root, filename)
|
185 |
+
|
186 |
+
makedir(root)
|
187 |
+
|
188 |
+
# check if file is already present locally
|
189 |
+
if check_integrity(fpath, md5):
|
190 |
+
print("Using downloaded and verified file: " + fpath)
|
191 |
+
return
|
192 |
+
|
193 |
+
# expand redirect chain if needed
|
194 |
+
url = get_redirected_url(url)
|
195 |
+
|
196 |
+
# check if file is located on Google Drive
|
197 |
+
file_id = _get_google_drive_file_id(url)
|
198 |
+
if file_id is not None:
|
199 |
+
return download_file_from_google_drive(file_id, root, filename, md5)
|
200 |
+
|
201 |
+
# download the file
|
202 |
+
try:
|
203 |
+
print("Downloading " + url + " to " + fpath)
|
204 |
+
_urlretrieve(url, fpath)
|
205 |
+
except (urllib.error.URLError, IOError) as e: # type: ignore[attr-defined]
|
206 |
+
if url[:5] == "https":
|
207 |
+
url = url.replace("https:", "http:")
|
208 |
+
print(
|
209 |
+
"Failed download. Trying https -> http instead."
|
210 |
+
" Downloading " + url + " to " + fpath
|
211 |
+
)
|
212 |
+
_urlretrieve(url, fpath)
|
213 |
+
else:
|
214 |
+
raise e
|
215 |
+
|
216 |
+
# check integrity of downloaded file
|
217 |
+
if not check_integrity(fpath, md5):
|
218 |
+
raise RuntimeError("File not found or corrupted.")
|
219 |
+
|
220 |
+
|
221 |
+
def download_and_extract_archive(
|
222 |
+
url: str,
|
223 |
+
download_root: str,
|
224 |
+
extract_root: Optional[str] = None,
|
225 |
+
filename: Optional[str] = None,
|
226 |
+
md5: Optional[str] = None,
|
227 |
+
remove_finished: bool = False,
|
228 |
+
) -> None:
|
229 |
+
download_root = os.path.expanduser(download_root)
|
230 |
+
if extract_root is None:
|
231 |
+
extract_root = download_root
|
232 |
+
if not filename:
|
233 |
+
filename = os.path.basename(url)
|
234 |
+
|
235 |
+
download_url(url, download_root, filename, md5)
|
236 |
+
|
237 |
+
archive = os.path.join(download_root, filename)
|
238 |
+
print("Extracting {} to {}".format(archive, extract_root))
|
239 |
+
extract_archive(archive, extract_root, remove_finished)
|
240 |
+
|
241 |
+
|
242 |
+
def cache_url(url: str, cache_dir: str) -> str:
|
243 |
+
"""
|
244 |
+
This implementation downloads the remote resource and caches it locally.
|
245 |
+
The resource will only be downloaded if not previously requested.
|
246 |
+
"""
|
247 |
+
parsed_url = urlparse(url)
|
248 |
+
dirname = os.path.join(cache_dir, os.path.dirname(parsed_url.path.lstrip("/")))
|
249 |
+
makedir(dirname)
|
250 |
+
filename = url.split("/")[-1]
|
251 |
+
cached = os.path.join(dirname, filename)
|
252 |
+
with file_lock(cached):
|
253 |
+
if not os.path.isfile(cached):
|
254 |
+
logging.info(f"Downloading {url} to {cached} ...")
|
255 |
+
cached = download(url, dirname, filename=filename)
|
256 |
+
logging.info(f"URL {url} cached in {cached}")
|
257 |
+
return cached
|
258 |
+
|
259 |
+
|
260 |
+
# TODO (prigoyal): convert this into RAII-style API
|
261 |
+
def create_file_symlink(file1, file2):
|
262 |
+
"""
|
263 |
+
Simply create the symlinks for a given file1 to file2.
|
264 |
+
Useful during model checkpointing to symlinks to the
|
265 |
+
latest successful checkpoint.
|
266 |
+
"""
|
267 |
+
try:
|
268 |
+
if g_pathmgr.exists(file2):
|
269 |
+
g_pathmgr.rm(file2)
|
270 |
+
g_pathmgr.symlink(file1, file2)
|
271 |
+
except Exception as e:
|
272 |
+
logging.info(f"Could NOT create symlink. Error: {e}")
|
273 |
+
|
274 |
+
|
275 |
+
def save_file(data, filename, append_to_json=True, verbose=True):
|
276 |
+
"""
|
277 |
+
Common i/o utility to handle saving data to various file formats.
|
278 |
+
Supported:
|
279 |
+
.pkl, .pickle, .npy, .json
|
280 |
+
Specifically for .json, users have the option to either append (default)
|
281 |
+
or rewrite by passing in Boolean value to append_to_json.
|
282 |
+
"""
|
283 |
+
if verbose:
|
284 |
+
logging.info(f"Saving data to file: {filename}")
|
285 |
+
file_ext = os.path.splitext(filename)[1]
|
286 |
+
if file_ext in [".pkl", ".pickle"]:
|
287 |
+
with g_pathmgr.open(filename, "wb") as fopen:
|
288 |
+
pickle.dump(data, fopen, pickle.HIGHEST_PROTOCOL)
|
289 |
+
elif file_ext == ".npy":
|
290 |
+
with g_pathmgr.open(filename, "wb") as fopen:
|
291 |
+
np.save(fopen, data)
|
292 |
+
elif file_ext == ".json":
|
293 |
+
if append_to_json:
|
294 |
+
with g_pathmgr.open(filename, "a") as fopen:
|
295 |
+
fopen.write(json.dumps(data, sort_keys=True) + "\n")
|
296 |
+
fopen.flush()
|
297 |
+
else:
|
298 |
+
with g_pathmgr.open(filename, "w") as fopen:
|
299 |
+
fopen.write(json.dumps(data, sort_keys=True) + "\n")
|
300 |
+
fopen.flush()
|
301 |
+
elif file_ext == ".yaml":
|
302 |
+
with g_pathmgr.open(filename, "w") as fopen:
|
303 |
+
dump = yaml.dump(data)
|
304 |
+
fopen.write(dump)
|
305 |
+
fopen.flush()
|
306 |
+
else:
|
307 |
+
raise Exception(f"Saving {file_ext} is not supported yet")
|
308 |
+
|
309 |
+
if verbose:
|
310 |
+
logging.info(f"Saved data to file: {filename}")
|
311 |
+
|
312 |
+
|
313 |
+
def load_file(filename, mmap_mode=None, verbose=True, allow_pickle=False):
|
314 |
+
"""
|
315 |
+
Common i/o utility to handle loading data from various file formats.
|
316 |
+
Supported:
|
317 |
+
.pkl, .pickle, .npy, .json
|
318 |
+
For the npy files, we support reading the files in mmap_mode.
|
319 |
+
If the mmap_mode of reading is not successful, we load data without the
|
320 |
+
mmap_mode.
|
321 |
+
"""
|
322 |
+
if verbose:
|
323 |
+
logging.info(f"Loading data from file: {filename}")
|
324 |
+
|
325 |
+
file_ext = os.path.splitext(filename)[1]
|
326 |
+
if file_ext == ".txt":
|
327 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
328 |
+
data = fopen.readlines()
|
329 |
+
elif file_ext in [".pkl", ".pickle"]:
|
330 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
331 |
+
data = pickle.load(fopen, encoding="latin1")
|
332 |
+
elif file_ext == ".npy":
|
333 |
+
if mmap_mode:
|
334 |
+
try:
|
335 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
336 |
+
data = np.load(
|
337 |
+
fopen,
|
338 |
+
allow_pickle=allow_pickle,
|
339 |
+
encoding="latin1",
|
340 |
+
mmap_mode=mmap_mode,
|
341 |
+
)
|
342 |
+
except ValueError as e:
|
343 |
+
logging.info(
|
344 |
+
f"Could not mmap {filename}: {e}. Trying without g_pathmgr"
|
345 |
+
)
|
346 |
+
data = np.load(
|
347 |
+
filename,
|
348 |
+
allow_pickle=allow_pickle,
|
349 |
+
encoding="latin1",
|
350 |
+
mmap_mode=mmap_mode,
|
351 |
+
)
|
352 |
+
logging.info("Successfully loaded without g_pathmgr")
|
353 |
+
except Exception:
|
354 |
+
logging.info("Could not mmap without g_pathmgr. Trying without mmap")
|
355 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
356 |
+
data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1")
|
357 |
+
else:
|
358 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
359 |
+
data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1")
|
360 |
+
elif file_ext == ".json":
|
361 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
362 |
+
data = json.load(fopen)
|
363 |
+
elif file_ext == ".yaml":
|
364 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
365 |
+
data = yaml.load(fopen, Loader=yaml.FullLoader)
|
366 |
+
elif file_ext == ".csv":
|
367 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
368 |
+
data = pd.read_csv(fopen)
|
369 |
+
else:
|
370 |
+
raise Exception(f"Reading from {file_ext} is not supported yet")
|
371 |
+
return data
|
372 |
+
|
373 |
+
|
374 |
+
def abspath(resource_path: str):
|
375 |
+
"""
|
376 |
+
Make a path absolute, but take into account prefixes like
|
377 |
+
"http://" or "manifold://"
|
378 |
+
"""
|
379 |
+
regex = re.compile(r"^\w+://")
|
380 |
+
if regex.match(resource_path) is None:
|
381 |
+
return os.path.abspath(resource_path)
|
382 |
+
else:
|
383 |
+
return resource_path
|
384 |
+
|
385 |
+
|
386 |
+
def makedir(dir_path):
|
387 |
+
"""
|
388 |
+
Create the directory if it does not exist.
|
389 |
+
"""
|
390 |
+
is_success = False
|
391 |
+
try:
|
392 |
+
if not g_pathmgr.exists(dir_path):
|
393 |
+
g_pathmgr.mkdirs(dir_path)
|
394 |
+
is_success = True
|
395 |
+
except BaseException:
|
396 |
+
logging.info(f"Error creating directory: {dir_path}")
|
397 |
+
return is_success
|
398 |
+
|
399 |
+
|
400 |
+
def is_url(input_url):
|
401 |
+
"""
|
402 |
+
Check if an input string is a url. look for http(s):// and ignoring the case
|
403 |
+
"""
|
404 |
+
is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None
|
405 |
+
return is_url
|
406 |
+
|
407 |
+
|
408 |
+
def cleanup_dir(dir):
|
409 |
+
"""
|
410 |
+
Utility for deleting a directory. Useful for cleaning the storage space
|
411 |
+
that contains various training artifacts like checkpoints, data etc.
|
412 |
+
"""
|
413 |
+
if os.path.exists(dir):
|
414 |
+
logging.info(f"Deleting directory: {dir}")
|
415 |
+
shutil.rmtree(dir)
|
416 |
+
logging.info(f"Deleted contents of directory: {dir}")
|
417 |
+
|
418 |
+
|
419 |
+
def get_file_size(filename):
|
420 |
+
"""
|
421 |
+
Given a file, get the size of file in MB
|
422 |
+
"""
|
423 |
+
size_in_mb = os.path.getsize(filename) / float(1024**2)
|
424 |
+
return size_in_mb
|
video_llama/configs/datasets/cc_sbu/align.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
cc_sbu_align:
|
3 |
+
data_type: images
|
4 |
+
build_info:
|
5 |
+
storage: /path/to/cc_sbu_align_dataset
|
video_llama/configs/datasets/cc_sbu/defaults.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
cc_sbu:
|
3 |
+
data_type: images
|
4 |
+
build_info:
|
5 |
+
storage: /path/to/cc_sbu_dataset/{00000..00001}.tar
|
video_llama/configs/datasets/instruct/llava_instruct.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
llava_instruct:
|
3 |
+
data_type: image
|
4 |
+
build_info:
|
5 |
+
anno_dir: /path/llava_instruct_150k.json
|
6 |
+
videos_dir: /path/train2014/train2014/
|
video_llama/configs/datasets/instruct/webvid_instruct.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
webvid_instruct:
|
3 |
+
data_type: image
|
4 |
+
build_info:
|
5 |
+
anno_dir: /path/webvid_align/videochat_instruct_11k.json
|
6 |
+
videos_dir: /path/webvid_align/videos/
|
video_llama/configs/datasets/laion/defaults.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
laion:
|
3 |
+
data_type: images
|
4 |
+
build_info:
|
5 |
+
storage: path/laion/laion_dataset/{00000..00001}.tar
|
video_llama/configs/datasets/webvid/defaults.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
webvid:
|
3 |
+
data_type: video
|
4 |
+
build_info:
|
5 |
+
anno_dir: path/webvid/webvid_tain_data/annotations/
|
6 |
+
videos_dir: path//webvid/webvid_tain_data/videos/
|
video_llama/configs/default.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
env:
|
2 |
+
# For default users
|
3 |
+
# cache_root: "cache"
|
4 |
+
# For internal use with persistent storage
|
5 |
+
cache_root: "/export/home/.cache/minigpt4"
|
video_llama/configs/models/minigpt4.yaml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: mini_gpt4
|
3 |
+
|
4 |
+
# vit encoder
|
5 |
+
image_size: 224
|
6 |
+
drop_path_rate: 0
|
7 |
+
use_grad_checkpoint: False
|
8 |
+
vit_precision: "fp16"
|
9 |
+
freeze_vit: True
|
10 |
+
freeze_qformer: True
|
11 |
+
|
12 |
+
# Q-Former
|
13 |
+
num_query_token: 32
|
14 |
+
|
15 |
+
# Vicuna
|
16 |
+
llama_model: "ckpt/vicuna-13b/"
|
17 |
+
|
18 |
+
# generation configs
|
19 |
+
prompt: ""
|
20 |
+
|
21 |
+
preprocess:
|
22 |
+
vis_processor:
|
23 |
+
train:
|
24 |
+
name: "blip2_image_train"
|
25 |
+
image_size: 224
|
26 |
+
eval:
|
27 |
+
name: "blip2_image_eval"
|
28 |
+
image_size: 224
|
29 |
+
text_processor:
|
30 |
+
train:
|
31 |
+
name: "blip_caption"
|
32 |
+
eval:
|
33 |
+
name: "blip_caption"
|
video_llama/configs/models/video_llama.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
arch: video_llama
|
3 |
+
|
4 |
+
# vit encoder
|
5 |
+
image_size: 224
|
6 |
+
drop_path_rate: 0
|
7 |
+
use_grad_checkpoint: False
|
8 |
+
vit_precision: "fp16"
|
9 |
+
freeze_vit: True
|
10 |
+
freeze_qformer: True
|
11 |
+
|
12 |
+
# Q-Former
|
13 |
+
num_query_token: 32
|
14 |
+
|
15 |
+
# Vicuna
|
16 |
+
llama_model: "ckpt/vicuna-7b/"
|
17 |
+
|
18 |
+
# generation configs
|
19 |
+
prompt: ""
|
20 |
+
|
21 |
+
preprocess:
|
22 |
+
vis_processor:
|
23 |
+
train:
|
24 |
+
name: "alpro_video_train"
|
25 |
+
image_size: 224
|
26 |
+
n_frms: 8
|
27 |
+
eval:
|
28 |
+
name: "alpro_video_eval"
|
29 |
+
image_size: 224
|
30 |
+
n_frms: 8
|
31 |
+
text_processor:
|
32 |
+
train:
|
33 |
+
name: "blip_caption"
|
34 |
+
eval:
|
35 |
+
name: "blip_caption"
|
36 |
+
|
video_llama/conversation/__init__.py
ADDED
File without changes
|
video_llama/conversation/conversation_video.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt template of Video-LLaMA.
|
3 |
+
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/conversation/conversation.py
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
import time
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
11 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
12 |
+
|
13 |
+
import dataclasses
|
14 |
+
from enum import auto, Enum
|
15 |
+
from typing import List, Tuple, Any
|
16 |
+
import os
|
17 |
+
from video_llama.common.registry import registry
|
18 |
+
from video_llama.processors.video_processor import ToTHWC,ToUint8,load_video
|
19 |
+
from video_llama.processors import Blip2ImageEvalProcessor
|
20 |
+
class SeparatorStyle(Enum):
|
21 |
+
"""Different separator style."""
|
22 |
+
SINGLE = auto()
|
23 |
+
TWO = auto()
|
24 |
+
|
25 |
+
|
26 |
+
@dataclasses.dataclass
|
27 |
+
class Conversation:
|
28 |
+
"""A class that keeps all conversation history."""
|
29 |
+
system: str
|
30 |
+
roles: List[str]
|
31 |
+
messages: List[List[str]]
|
32 |
+
offset: int
|
33 |
+
# system_img: List[Image.Image] = []
|
34 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
35 |
+
sep: str = "###"
|
36 |
+
sep2: str = None
|
37 |
+
|
38 |
+
skip_next: bool = False
|
39 |
+
conv_id: Any = None
|
40 |
+
|
41 |
+
def get_prompt(self):
|
42 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
43 |
+
ret = self.system + self.sep
|
44 |
+
for role, message in self.messages:
|
45 |
+
if message:
|
46 |
+
ret += role + ": " + message + self.sep
|
47 |
+
else:
|
48 |
+
ret += role + ":"
|
49 |
+
return ret
|
50 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
51 |
+
seps = [self.sep, self.sep2]
|
52 |
+
ret = self.system + seps[0]
|
53 |
+
for i, (role, message) in enumerate(self.messages):
|
54 |
+
if message:
|
55 |
+
ret += role + ": " + message + seps[i % 2]
|
56 |
+
else:
|
57 |
+
ret += role + ":"
|
58 |
+
return ret
|
59 |
+
else:
|
60 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
61 |
+
|
62 |
+
def append_message(self, role, message):
|
63 |
+
self.messages.append([role, message])
|
64 |
+
|
65 |
+
def to_gradio_chatbot(self):
|
66 |
+
ret = []
|
67 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
68 |
+
if i % 2 == 0:
|
69 |
+
ret.append([msg, None])
|
70 |
+
else:
|
71 |
+
ret[-1][-1] = msg
|
72 |
+
return ret
|
73 |
+
|
74 |
+
def copy(self):
|
75 |
+
return Conversation(
|
76 |
+
system=self.system,
|
77 |
+
# system_img=self.system_img,
|
78 |
+
roles=self.roles,
|
79 |
+
messages=[[x, y] for x, y in self.messages],
|
80 |
+
offset=self.offset,
|
81 |
+
sep_style=self.sep_style,
|
82 |
+
sep=self.sep,
|
83 |
+
sep2=self.sep2,
|
84 |
+
conv_id=self.conv_id)
|
85 |
+
|
86 |
+
def dict(self):
|
87 |
+
return {
|
88 |
+
"system": self.system,
|
89 |
+
# "system_img": self.system_img,
|
90 |
+
"roles": self.roles,
|
91 |
+
"messages": self.messages,
|
92 |
+
"offset": self.offset,
|
93 |
+
"sep": self.sep,
|
94 |
+
"sep2": self.sep2,
|
95 |
+
"conv_id": self.conv_id,
|
96 |
+
}
|
97 |
+
|
98 |
+
|
99 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
100 |
+
|
101 |
+
def __init__(self, stops=[], encounters=1):
|
102 |
+
super().__init__()
|
103 |
+
self.stops = stops
|
104 |
+
|
105 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
106 |
+
for stop in self.stops:
|
107 |
+
if torch.all((stop == input_ids[0][-len(stop):])).item():
|
108 |
+
return True
|
109 |
+
|
110 |
+
return False
|
111 |
+
|
112 |
+
|
113 |
+
CONV_VISION = Conversation(
|
114 |
+
system="Give the following image: <Img>ImageContent</Img>. "
|
115 |
+
"You will be able to see the image once I provide it to you. Please answer my questions.",
|
116 |
+
roles=("Human", "Assistant"),
|
117 |
+
messages=[],
|
118 |
+
offset=0,
|
119 |
+
sep_style=SeparatorStyle.SINGLE,
|
120 |
+
sep="###",
|
121 |
+
)
|
122 |
+
|
123 |
+
default_conversation = Conversation(
|
124 |
+
system="",
|
125 |
+
roles=("Human", "Assistant"),
|
126 |
+
messages=[],
|
127 |
+
offset=0,
|
128 |
+
sep_style=SeparatorStyle.SINGLE,
|
129 |
+
sep="###",
|
130 |
+
)
|
131 |
+
|
132 |
+
class Chat:
|
133 |
+
def __init__(self, model, vis_processor, device='cuda:0'):
|
134 |
+
self.device = device
|
135 |
+
self.model = model
|
136 |
+
self.vis_processor = vis_processor
|
137 |
+
self.image_vis_processor = Blip2ImageEvalProcessor()
|
138 |
+
stop_words_ids = [torch.tensor([835]).to(self.device),
|
139 |
+
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
|
140 |
+
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
141 |
+
|
142 |
+
def ask(self, text, conv):
|
143 |
+
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
144 |
+
and ('</Video>' in conv.messages[-1][1] or '</Image>' in conv.messages[-1][1]): # last message is image.
|
145 |
+
conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
|
146 |
+
else:
|
147 |
+
conv.append_message(conv.roles[0], text)
|
148 |
+
|
149 |
+
def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
|
150 |
+
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
|
151 |
+
conv.append_message(conv.roles[1], None)
|
152 |
+
embs = self.get_context_emb(conv, img_list)
|
153 |
+
|
154 |
+
current_max_len = embs.shape[1] + max_new_tokens
|
155 |
+
if current_max_len - max_length > 0:
|
156 |
+
print('Warning: The number of tokens in current conversation exceeds the max length. '
|
157 |
+
'The model will not see the contexts outside the range.')
|
158 |
+
begin_idx = max(0, current_max_len - max_length)
|
159 |
+
|
160 |
+
embs = embs[:, begin_idx:]
|
161 |
+
|
162 |
+
outputs = self.model.llama_model.generate(
|
163 |
+
inputs_embeds=embs,
|
164 |
+
max_new_tokens=max_new_tokens,
|
165 |
+
stopping_criteria=self.stopping_criteria,
|
166 |
+
num_beams=num_beams,
|
167 |
+
do_sample=True,
|
168 |
+
min_length=min_length,
|
169 |
+
top_p=top_p,
|
170 |
+
repetition_penalty=repetition_penalty,
|
171 |
+
length_penalty=length_penalty,
|
172 |
+
temperature=temperature,
|
173 |
+
)
|
174 |
+
output_token = outputs[0]
|
175 |
+
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
|
176 |
+
output_token = output_token[1:]
|
177 |
+
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
|
178 |
+
output_token = output_token[1:]
|
179 |
+
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
|
180 |
+
output_text = output_text.split('###')[0] # remove the stop sign '###'
|
181 |
+
output_text = output_text.split('Assistant:')[-1].strip()
|
182 |
+
conv.messages[-1][1] = output_text
|
183 |
+
return output_text, output_token.cpu().numpy()
|
184 |
+
|
185 |
+
def upload_video(self, video, conv, img_list):
|
186 |
+
|
187 |
+
msg = ""
|
188 |
+
if isinstance(video, str): # is a video path
|
189 |
+
ext = os.path.splitext(video)[-1].lower()
|
190 |
+
print(video)
|
191 |
+
# image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
192 |
+
video, msg = load_video(
|
193 |
+
video_path=video,
|
194 |
+
n_frms=8,
|
195 |
+
height=224,
|
196 |
+
width=224,
|
197 |
+
sampling ="uniform", return_msg = True
|
198 |
+
)
|
199 |
+
video = self.vis_processor.transform(video)
|
200 |
+
video = video.unsqueeze(0).to(self.device)
|
201 |
+
# print(image)
|
202 |
+
else:
|
203 |
+
raise NotImplementedError
|
204 |
+
|
205 |
+
image_emb, _ = self.model.encode_img(video)
|
206 |
+
img_list.append(image_emb)
|
207 |
+
conv.append_message(conv.roles[0], "<Video><ImageHere></Video> "+ msg)
|
208 |
+
return "Received."
|
209 |
+
|
210 |
+
def upload_img(self, image, conv, img_list):
|
211 |
+
|
212 |
+
msg = ""
|
213 |
+
if isinstance(image, str): # is a image path
|
214 |
+
raw_image = Image.open(image).convert('RGB') # 增加一个时间维度
|
215 |
+
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
|
216 |
+
elif isinstance(image, Image.Image):
|
217 |
+
raw_image = image
|
218 |
+
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
|
219 |
+
elif isinstance(image, torch.Tensor):
|
220 |
+
if len(image.shape) == 3:
|
221 |
+
image = image.unsqueeze(0)
|
222 |
+
image = image.to(self.device)
|
223 |
+
else:
|
224 |
+
raise NotImplementedError
|
225 |
+
|
226 |
+
image_emb, _ = self.model.encode_img(image)
|
227 |
+
img_list.append(image_emb)
|
228 |
+
# Todo msg=""
|
229 |
+
conv.append_message(conv.roles[0], "<Image><ImageHere></Image> "+ msg)
|
230 |
+
|
231 |
+
return "Received."
|
232 |
+
|
233 |
+
def get_context_emb(self, conv, img_list):
|
234 |
+
prompt = conv.get_prompt()
|
235 |
+
prompt_segs = prompt.split('<ImageHere>')
|
236 |
+
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
|
237 |
+
seg_tokens = [
|
238 |
+
self.model.llama_tokenizer(
|
239 |
+
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
|
240 |
+
# only add bos to the first seg
|
241 |
+
for i, seg in enumerate(prompt_segs)
|
242 |
+
]
|
243 |
+
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
|
244 |
+
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
245 |
+
mixed_embs = torch.cat(mixed_embs, dim=1)
|
246 |
+
return mixed_embs
|
247 |
+
|
248 |
+
|
video_llama/datasets/__init__.py
ADDED
File without changes
|
video_llama/datasets/builders/__init__.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
from video_llama.datasets.builders.base_dataset_builder import load_dataset_config
|
9 |
+
from video_llama.datasets.builders.image_text_pair_builder import (
|
10 |
+
CCSBUBuilder,
|
11 |
+
LaionBuilder,
|
12 |
+
CCSBUAlignBuilder
|
13 |
+
)
|
14 |
+
from video_llama.datasets.builders.video_caption_builder import WebvidBuilder
|
15 |
+
from video_llama.common.registry import registry
|
16 |
+
from video_llama.datasets.builders.instruct_builder import WebvidInstruct_Builder,LlavaInstruct_Builder
|
17 |
+
__all__ = [
|
18 |
+
"CCSBUBuilder",
|
19 |
+
"LaionBuilder",
|
20 |
+
"CCSBUAlignBuilder",
|
21 |
+
"WebvidBuilder",
|
22 |
+
"LlavaInstruct_Builder",
|
23 |
+
"WebvidInstruct_Builder"
|
24 |
+
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
def load_dataset(name, cfg_path=None, vis_path=None, data_type=None):
|
29 |
+
"""
|
30 |
+
Example
|
31 |
+
|
32 |
+
>>> dataset = load_dataset("coco_caption", cfg=None)
|
33 |
+
>>> splits = dataset.keys()
|
34 |
+
>>> print([len(dataset[split]) for split in splits])
|
35 |
+
|
36 |
+
"""
|
37 |
+
if cfg_path is None:
|
38 |
+
cfg = None
|
39 |
+
else:
|
40 |
+
cfg = load_dataset_config(cfg_path)
|
41 |
+
|
42 |
+
try:
|
43 |
+
builder = registry.get_builder_class(name)(cfg)
|
44 |
+
except TypeError:
|
45 |
+
print(
|
46 |
+
f"Dataset {name} not found. Available datasets:\n"
|
47 |
+
+ ", ".join([str(k) for k in dataset_zoo.get_names()])
|
48 |
+
)
|
49 |
+
exit(1)
|
50 |
+
|
51 |
+
if vis_path is not None:
|
52 |
+
if data_type is None:
|
53 |
+
# use default data type in the config
|
54 |
+
data_type = builder.config.data_type
|
55 |
+
|
56 |
+
assert (
|
57 |
+
data_type in builder.config.build_info
|
58 |
+
), f"Invalid data_type {data_type} for {name}."
|
59 |
+
|
60 |
+
builder.config.build_info.get(data_type).storage = vis_path
|
61 |
+
|
62 |
+
dataset = builder.build_datasets()
|
63 |
+
return dataset
|
64 |
+
|
65 |
+
|
66 |
+
class DatasetZoo:
|
67 |
+
def __init__(self) -> None:
|
68 |
+
self.dataset_zoo = {
|
69 |
+
k: list(v.DATASET_CONFIG_DICT.keys())
|
70 |
+
for k, v in sorted(registry.mapping["builder_name_mapping"].items())
|
71 |
+
}
|
72 |
+
|
73 |
+
def get_names(self):
|
74 |
+
return list(self.dataset_zoo.keys())
|
75 |
+
|
76 |
+
|
77 |
+
dataset_zoo = DatasetZoo()
|
video_llama/datasets/builders/base_dataset_builder.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is from
|
3 |
+
Copyright (c) 2022, salesforce.com, inc.
|
4 |
+
All rights reserved.
|
5 |
+
SPDX-License-Identifier: BSD-3-Clause
|
6 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
7 |
+
"""
|
8 |
+
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
import torch.distributed as dist
|
16 |
+
from torchvision.datasets.utils import download_url
|
17 |
+
|
18 |
+
import video_llama.common.utils as utils
|
19 |
+
from video_llama.common.dist_utils import is_dist_avail_and_initialized, is_main_process
|
20 |
+
from video_llama.common.registry import registry
|
21 |
+
from video_llama.processors.base_processor import BaseProcessor
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
class BaseDatasetBuilder:
|
26 |
+
train_dataset_cls, eval_dataset_cls = None, None
|
27 |
+
|
28 |
+
def __init__(self, cfg=None):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
if cfg is None:
|
32 |
+
# help to create datasets from default config.
|
33 |
+
self.config = load_dataset_config(self.default_config_path())
|
34 |
+
elif isinstance(cfg, str):
|
35 |
+
self.config = load_dataset_config(cfg)
|
36 |
+
else:
|
37 |
+
# when called from task.build_dataset()
|
38 |
+
self.config = cfg
|
39 |
+
|
40 |
+
self.data_type = self.config.data_type
|
41 |
+
|
42 |
+
self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
43 |
+
self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
44 |
+
|
45 |
+
def build_datasets(self):
|
46 |
+
# download, split, etc...
|
47 |
+
# only called on 1 GPU/TPU in distributed
|
48 |
+
|
49 |
+
if is_main_process():
|
50 |
+
self._download_data()
|
51 |
+
|
52 |
+
if is_dist_avail_and_initialized():
|
53 |
+
dist.barrier()
|
54 |
+
|
55 |
+
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
56 |
+
logging.info("Building datasets...")
|
57 |
+
datasets = self.build() # dataset['train'/'val'/'test']
|
58 |
+
|
59 |
+
return datasets
|
60 |
+
|
61 |
+
def build_processors(self):
|
62 |
+
vis_proc_cfg = self.config.get("vis_processor")
|
63 |
+
txt_proc_cfg = self.config.get("text_processor")
|
64 |
+
|
65 |
+
if vis_proc_cfg is not None:
|
66 |
+
vis_train_cfg = vis_proc_cfg.get("train")
|
67 |
+
vis_eval_cfg = vis_proc_cfg.get("eval")
|
68 |
+
|
69 |
+
self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg)
|
70 |
+
self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg)
|
71 |
+
|
72 |
+
if txt_proc_cfg is not None:
|
73 |
+
txt_train_cfg = txt_proc_cfg.get("train")
|
74 |
+
txt_eval_cfg = txt_proc_cfg.get("eval")
|
75 |
+
|
76 |
+
self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg)
|
77 |
+
self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg)
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def _build_proc_from_cfg(cfg):
|
81 |
+
return (
|
82 |
+
registry.get_processor_class(cfg.name).from_config(cfg)
|
83 |
+
if cfg is not None
|
84 |
+
else None
|
85 |
+
)
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def default_config_path(cls, type="default"):
|
89 |
+
return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type])
|
90 |
+
|
91 |
+
def _download_data(self):
|
92 |
+
self._download_ann()
|
93 |
+
self._download_vis()
|
94 |
+
|
95 |
+
def _download_ann(self):
|
96 |
+
"""
|
97 |
+
Download annotation files if necessary.
|
98 |
+
All the vision-language datasets should have annotations of unified format.
|
99 |
+
|
100 |
+
storage_path can be:
|
101 |
+
(1) relative/absolute: will be prefixed with env.cache_root to make full path if relative.
|
102 |
+
(2) basename/dirname: will be suffixed with base name of URL if dirname is provided.
|
103 |
+
|
104 |
+
Local annotation paths should be relative.
|
105 |
+
"""
|
106 |
+
anns = self.config.build_info.annotations
|
107 |
+
|
108 |
+
splits = anns.keys()
|
109 |
+
|
110 |
+
cache_root = registry.get_path("cache_root")
|
111 |
+
|
112 |
+
for split in splits:
|
113 |
+
info = anns[split]
|
114 |
+
|
115 |
+
urls, storage_paths = info.get("url", None), info.storage
|
116 |
+
|
117 |
+
if isinstance(urls, str):
|
118 |
+
urls = [urls]
|
119 |
+
if isinstance(storage_paths, str):
|
120 |
+
storage_paths = [storage_paths]
|
121 |
+
|
122 |
+
assert len(urls) == len(storage_paths)
|
123 |
+
|
124 |
+
for url_or_filename, storage_path in zip(urls, storage_paths):
|
125 |
+
# if storage_path is relative, make it full by prefixing with cache_root.
|
126 |
+
if not os.path.isabs(storage_path):
|
127 |
+
storage_path = os.path.join(cache_root, storage_path)
|
128 |
+
|
129 |
+
dirname = os.path.dirname(storage_path)
|
130 |
+
if not os.path.exists(dirname):
|
131 |
+
os.makedirs(dirname)
|
132 |
+
|
133 |
+
if os.path.isfile(url_or_filename):
|
134 |
+
src, dst = url_or_filename, storage_path
|
135 |
+
if not os.path.exists(dst):
|
136 |
+
shutil.copyfile(src=src, dst=dst)
|
137 |
+
else:
|
138 |
+
logging.info("Using existing file {}.".format(dst))
|
139 |
+
else:
|
140 |
+
if os.path.isdir(storage_path):
|
141 |
+
# if only dirname is provided, suffix with basename of URL.
|
142 |
+
raise ValueError(
|
143 |
+
"Expecting storage_path to be a file path, got directory {}".format(
|
144 |
+
storage_path
|
145 |
+
)
|
146 |
+
)
|
147 |
+
else:
|
148 |
+
filename = os.path.basename(storage_path)
|
149 |
+
|
150 |
+
download_url(url=url_or_filename, root=dirname, filename=filename)
|
151 |
+
|
152 |
+
def _download_vis(self):
|
153 |
+
|
154 |
+
storage_path = self.config.build_info.get(self.data_type).storage
|
155 |
+
storage_path = utils.get_cache_path(storage_path)
|
156 |
+
|
157 |
+
if not os.path.exists(storage_path):
|
158 |
+
warnings.warn(
|
159 |
+
f"""
|
160 |
+
The specified path {storage_path} for visual inputs does not exist.
|
161 |
+
Please provide a correct path to the visual inputs or
|
162 |
+
refer to datasets/download_scripts/README.md for downloading instructions.
|
163 |
+
"""
|
164 |
+
)
|
165 |
+
|
166 |
+
def build(self):
|
167 |
+
"""
|
168 |
+
Create by split datasets inheriting torch.utils.data.Datasets.
|
169 |
+
|
170 |
+
# build() can be dataset-specific. Overwrite to customize.
|
171 |
+
"""
|
172 |
+
self.build_processors()
|
173 |
+
|
174 |
+
build_info = self.config.build_info
|
175 |
+
|
176 |
+
ann_info = build_info.annotations
|
177 |
+
vis_info = build_info.get(self.data_type)
|
178 |
+
|
179 |
+
datasets = dict()
|
180 |
+
for split in ann_info.keys():
|
181 |
+
if split not in ["train", "val", "test"]:
|
182 |
+
continue
|
183 |
+
|
184 |
+
is_train = split == "train"
|
185 |
+
|
186 |
+
# processors
|
187 |
+
vis_processor = (
|
188 |
+
self.vis_processors["train"]
|
189 |
+
if is_train
|
190 |
+
else self.vis_processors["eval"]
|
191 |
+
)
|
192 |
+
text_processor = (
|
193 |
+
self.text_processors["train"]
|
194 |
+
if is_train
|
195 |
+
else self.text_processors["eval"]
|
196 |
+
)
|
197 |
+
|
198 |
+
# annotation path
|
199 |
+
ann_paths = ann_info.get(split).storage
|
200 |
+
if isinstance(ann_paths, str):
|
201 |
+
ann_paths = [ann_paths]
|
202 |
+
|
203 |
+
abs_ann_paths = []
|
204 |
+
for ann_path in ann_paths:
|
205 |
+
if not os.path.isabs(ann_path):
|
206 |
+
ann_path = utils.get_cache_path(ann_path)
|
207 |
+
abs_ann_paths.append(ann_path)
|
208 |
+
ann_paths = abs_ann_paths
|
209 |
+
|
210 |
+
# visual data storage path
|
211 |
+
vis_path = os.path.join(vis_info.storage, split)
|
212 |
+
|
213 |
+
if not os.path.isabs(vis_path):
|
214 |
+
# vis_path = os.path.join(utils.get_cache_path(), vis_path)
|
215 |
+
vis_path = utils.get_cache_path(vis_path)
|
216 |
+
|
217 |
+
if not os.path.exists(vis_path):
|
218 |
+
warnings.warn("storage path {} does not exist.".format(vis_path))
|
219 |
+
|
220 |
+
# create datasets
|
221 |
+
dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
|
222 |
+
datasets[split] = dataset_cls(
|
223 |
+
vis_processor=vis_processor,
|
224 |
+
text_processor=text_processor,
|
225 |
+
ann_paths=ann_paths,
|
226 |
+
vis_root=vis_path,
|
227 |
+
)
|
228 |
+
|
229 |
+
return datasets
|
230 |
+
|
231 |
+
|
232 |
+
def load_dataset_config(cfg_path):
|
233 |
+
cfg = OmegaConf.load(cfg_path).datasets
|
234 |
+
cfg = cfg[list(cfg.keys())[0]]
|
235 |
+
|
236 |
+
return cfg
|
video_llama/datasets/builders/image_text_pair_builder.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from video_llama.common.registry import registry
|
6 |
+
from video_llama.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
7 |
+
from video_llama.datasets.datasets.laion_dataset import LaionDataset
|
8 |
+
from video_llama.datasets.datasets.cc_sbu_dataset import CCSBUDataset, CCSBUAlignDataset
|
9 |
+
|
10 |
+
|
11 |
+
@registry.register_builder("cc_sbu")
|
12 |
+
class CCSBUBuilder(BaseDatasetBuilder):
|
13 |
+
train_dataset_cls = CCSBUDataset
|
14 |
+
|
15 |
+
DATASET_CONFIG_DICT = {"default": "configs/datasets/cc_sbu/defaults.yaml"}
|
16 |
+
|
17 |
+
def _download_ann(self):
|
18 |
+
pass
|
19 |
+
|
20 |
+
def _download_vis(self):
|
21 |
+
pass
|
22 |
+
|
23 |
+
def build(self):
|
24 |
+
self.build_processors()
|
25 |
+
|
26 |
+
build_info = self.config.build_info
|
27 |
+
|
28 |
+
datasets = dict()
|
29 |
+
split = "train"
|
30 |
+
|
31 |
+
# create datasets
|
32 |
+
# [NOTE] return inner_datasets (wds.DataPipeline)
|
33 |
+
dataset_cls = self.train_dataset_cls
|
34 |
+
datasets[split] = dataset_cls(
|
35 |
+
vis_processor=self.vis_processors[split],
|
36 |
+
text_processor=self.text_processors[split],
|
37 |
+
location=build_info.storage,
|
38 |
+
).inner_dataset
|
39 |
+
|
40 |
+
return datasets
|
41 |
+
|
42 |
+
|
43 |
+
@registry.register_builder("laion")
|
44 |
+
class LaionBuilder(BaseDatasetBuilder):
|
45 |
+
train_dataset_cls = LaionDataset
|
46 |
+
|
47 |
+
DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults.yaml"}
|
48 |
+
|
49 |
+
def _download_ann(self):
|
50 |
+
pass
|
51 |
+
|
52 |
+
def _download_vis(self):
|
53 |
+
pass
|
54 |
+
|
55 |
+
def build(self):
|
56 |
+
self.build_processors()
|
57 |
+
|
58 |
+
build_info = self.config.build_info
|
59 |
+
|
60 |
+
datasets = dict()
|
61 |
+
split = "train"
|
62 |
+
|
63 |
+
# create datasets
|
64 |
+
# [NOTE] return inner_datasets (wds.DataPipeline)
|
65 |
+
dataset_cls = self.train_dataset_cls
|
66 |
+
datasets[split] = dataset_cls(
|
67 |
+
vis_processor=self.vis_processors[split],
|
68 |
+
text_processor=self.text_processors[split],
|
69 |
+
location=build_info.storage,
|
70 |
+
).inner_dataset
|
71 |
+
|
72 |
+
return datasets
|
73 |
+
|
74 |
+
|
75 |
+
@registry.register_builder("cc_sbu_align")
|
76 |
+
class CCSBUAlignBuilder(BaseDatasetBuilder):
|
77 |
+
train_dataset_cls = CCSBUAlignDataset
|
78 |
+
|
79 |
+
DATASET_CONFIG_DICT = {
|
80 |
+
"default": "configs/datasets/cc_sbu/align.yaml",
|
81 |
+
}
|
82 |
+
|
83 |
+
def build_datasets(self):
|
84 |
+
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
85 |
+
logging.info("Building datasets...")
|
86 |
+
self.build_processors()
|
87 |
+
|
88 |
+
build_info = self.config.build_info
|
89 |
+
storage_path = build_info.storage
|
90 |
+
|
91 |
+
datasets = dict()
|
92 |
+
|
93 |
+
if not os.path.exists(storage_path):
|
94 |
+
warnings.warn("storage path {} does not exist.".format(storage_path))
|
95 |
+
|
96 |
+
# create datasets
|
97 |
+
dataset_cls = self.train_dataset_cls
|
98 |
+
datasets['train'] = dataset_cls(
|
99 |
+
vis_processor=self.vis_processors["train"],
|
100 |
+
text_processor=self.text_processors["train"],
|
101 |
+
ann_paths=[os.path.join(storage_path, 'filter_cap.json')],
|
102 |
+
vis_root=os.path.join(storage_path, 'image'),
|
103 |
+
)
|
104 |
+
|
105 |
+
return datasets
|
106 |
+
|
video_llama/datasets/builders/instruct_builder.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from video_llama.common.registry import registry
|
6 |
+
from video_llama.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
7 |
+
from video_llama.datasets.datasets.laion_dataset import LaionDataset
|
8 |
+
from video_llama.datasets.datasets.llava_instruct_dataset import Instruct_Dataset
|
9 |
+
from video_llama.datasets.datasets.video_instruct_dataset import Video_Instruct_Dataset
|
10 |
+
|
11 |
+
@registry.register_builder("instruct")
|
12 |
+
class Instruct_Builder(BaseDatasetBuilder):
|
13 |
+
train_dataset_cls = Instruct_Dataset
|
14 |
+
|
15 |
+
DATASET_CONFIG_DICT = {"default": "configs/datasets/instruct/defaults.yaml"}
|
16 |
+
|
17 |
+
def _download_ann(self):
|
18 |
+
pass
|
19 |
+
|
20 |
+
def _download_vis(self):
|
21 |
+
pass
|
22 |
+
|
23 |
+
def build(self):
|
24 |
+
self.build_processors()
|
25 |
+
datasets = dict()
|
26 |
+
split = "train"
|
27 |
+
|
28 |
+
build_info = self.config.build_info
|
29 |
+
dataset_cls = self.train_dataset_cls
|
30 |
+
if self.config.num_video_query_token:
|
31 |
+
num_video_query_token = self.config.num_video_query_token
|
32 |
+
else:
|
33 |
+
num_video_query_token = 32
|
34 |
+
|
35 |
+
if self.config.tokenizer_name:
|
36 |
+
tokenizer_name = self.config.tokenizer_name
|
37 |
+
else:
|
38 |
+
tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/'
|
39 |
+
|
40 |
+
|
41 |
+
datasets[split] = dataset_cls(
|
42 |
+
vis_processor=self.vis_processors[split],
|
43 |
+
text_processor=self.text_processors[split],
|
44 |
+
vis_root=build_info.videos_dir,
|
45 |
+
ann_root=build_info.anno_dir,
|
46 |
+
num_video_query_token = num_video_query_token,
|
47 |
+
tokenizer_name = tokenizer_name,
|
48 |
+
data_type = self.config.data_type
|
49 |
+
)
|
50 |
+
|
51 |
+
return datasets
|
52 |
+
|
53 |
+
@registry.register_builder("webvid_instruct")
|
54 |
+
class WebvidInstruct_Builder(Instruct_Builder):
|
55 |
+
train_dataset_cls = Video_Instruct_Dataset
|
56 |
+
|
57 |
+
DATASET_CONFIG_DICT = {
|
58 |
+
"default": "configs/datasets/instruct/webvid_instruct.yaml",
|
59 |
+
}
|
60 |
+
|
61 |
+
@registry.register_builder("webvid_instruct_zh")
|
62 |
+
class WebvidInstruct_zh_Builder(Instruct_Builder):
|
63 |
+
train_dataset_cls = Video_Instruct_Dataset
|
64 |
+
|
65 |
+
DATASET_CONFIG_DICT = {
|
66 |
+
"default": "configs/datasets/instruct/webvid_instruct.yaml",
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
@registry.register_builder("llava_instruct")
|
72 |
+
class LlavaInstruct_Builder(Instruct_Builder):
|
73 |
+
train_dataset_cls = Instruct_Dataset
|
74 |
+
|
75 |
+
DATASET_CONFIG_DICT = {
|
76 |
+
"default": "configs/datasets/instruct/llava_instruct.yaml",
|
77 |
+
}
|
78 |
+
|
video_llama/datasets/builders/video_caption_builder.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from video_llama.common.registry import registry
|
6 |
+
from video_llama.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
7 |
+
from video_llama.datasets.datasets.webvid_datasets import WebvidDataset
|
8 |
+
|
9 |
+
@registry.register_builder("webvid")
|
10 |
+
class WebvidBuilder(BaseDatasetBuilder):
|
11 |
+
train_dataset_cls = WebvidDataset
|
12 |
+
DATASET_CONFIG_DICT = {"default": "configs/datasets/webvid/defaults.yaml"}
|
13 |
+
|
14 |
+
def _download_ann(self):
|
15 |
+
pass
|
16 |
+
|
17 |
+
def _download_vis(self):
|
18 |
+
pass
|
19 |
+
|
20 |
+
def build(self):
|
21 |
+
self.build_processors()
|
22 |
+
datasets = dict()
|
23 |
+
split = "train"
|
24 |
+
|
25 |
+
build_info = self.config.build_info
|
26 |
+
dataset_cls = self.train_dataset_cls
|
27 |
+
datasets[split] = dataset_cls(
|
28 |
+
vis_processor=self.vis_processors[split],
|
29 |
+
text_processor=self.text_processors[split],
|
30 |
+
vis_root=build_info.videos_dir,
|
31 |
+
ann_root=build_info.anno_dir
|
32 |
+
)
|
33 |
+
|
34 |
+
return datasets
|
video_llama/datasets/data_utils.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import gzip
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import random as rnd
|
12 |
+
import tarfile
|
13 |
+
import zipfile
|
14 |
+
import random
|
15 |
+
from typing import List
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
import decord
|
19 |
+
from decord import VideoReader
|
20 |
+
import webdataset as wds
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from torch.utils.data.dataset import IterableDataset
|
24 |
+
|
25 |
+
from video_llama.common.registry import registry
|
26 |
+
from video_llama.datasets.datasets.base_dataset import ConcatDataset
|
27 |
+
|
28 |
+
|
29 |
+
decord.bridge.set_bridge("torch")
|
30 |
+
MAX_INT = registry.get("MAX_INT")
|
31 |
+
|
32 |
+
|
33 |
+
class ChainDataset(wds.DataPipeline):
|
34 |
+
r"""Dataset for chaining multiple :class:`DataPipeline` s.
|
35 |
+
|
36 |
+
This class is useful to assemble different existing dataset streams. The
|
37 |
+
chaining operation is done on-the-fly, so concatenating large-scale
|
38 |
+
datasets with this class will be efficient.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
datasets (iterable of IterableDataset): datasets to be chained together
|
42 |
+
"""
|
43 |
+
def __init__(self, datasets: List[wds.DataPipeline]) -> None:
|
44 |
+
super().__init__()
|
45 |
+
self.datasets = datasets
|
46 |
+
self.prob = []
|
47 |
+
self.names = []
|
48 |
+
for dataset in self.datasets:
|
49 |
+
if hasattr(dataset, 'name'):
|
50 |
+
self.names.append(dataset.name)
|
51 |
+
else:
|
52 |
+
self.names.append('Unknown')
|
53 |
+
if hasattr(dataset, 'sample_ratio'):
|
54 |
+
self.prob.append(dataset.sample_ratio)
|
55 |
+
else:
|
56 |
+
self.prob.append(1)
|
57 |
+
logging.info("One of the datapipeline doesn't define ratio and set to 1 automatically.")
|
58 |
+
|
59 |
+
def __iter__(self):
|
60 |
+
datastreams = [iter(dataset) for dataset in self.datasets]
|
61 |
+
while True:
|
62 |
+
select_datastream = random.choices(datastreams, weights=self.prob, k=1)[0]
|
63 |
+
yield next(select_datastream)
|
64 |
+
|
65 |
+
|
66 |
+
def apply_to_sample(f, sample):
|
67 |
+
if len(sample) == 0:
|
68 |
+
return {}
|
69 |
+
|
70 |
+
def _apply(x):
|
71 |
+
if torch.is_tensor(x):
|
72 |
+
return f(x)
|
73 |
+
elif isinstance(x, dict):
|
74 |
+
return {key: _apply(value) for key, value in x.items()}
|
75 |
+
elif isinstance(x, list):
|
76 |
+
return [_apply(x) for x in x]
|
77 |
+
else:
|
78 |
+
return x
|
79 |
+
|
80 |
+
return _apply(sample)
|
81 |
+
|
82 |
+
|
83 |
+
def move_to_cuda(sample):
|
84 |
+
def _move_to_cuda(tensor):
|
85 |
+
return tensor.cuda()
|
86 |
+
|
87 |
+
return apply_to_sample(_move_to_cuda, sample)
|
88 |
+
|
89 |
+
|
90 |
+
def prepare_sample(samples, cuda_enabled=True):
|
91 |
+
if cuda_enabled:
|
92 |
+
samples = move_to_cuda(samples)
|
93 |
+
|
94 |
+
# TODO fp16 support
|
95 |
+
|
96 |
+
return samples
|
97 |
+
|
98 |
+
|
99 |
+
def reorg_datasets_by_split(datasets):
|
100 |
+
"""
|
101 |
+
Organizes datasets by split.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
datasets: dict of torch.utils.data.Dataset objects by name.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
Dict of datasets by split {split_name: List[Datasets]}.
|
108 |
+
"""
|
109 |
+
# if len(datasets) == 1:
|
110 |
+
# return datasets[list(datasets.keys())[0]]
|
111 |
+
# else:
|
112 |
+
reorg_datasets = dict()
|
113 |
+
|
114 |
+
# reorganize by split
|
115 |
+
for _, dataset in datasets.items():
|
116 |
+
for split_name, dataset_split in dataset.items():
|
117 |
+
if split_name not in reorg_datasets:
|
118 |
+
reorg_datasets[split_name] = [dataset_split]
|
119 |
+
else:
|
120 |
+
reorg_datasets[split_name].append(dataset_split)
|
121 |
+
|
122 |
+
return reorg_datasets
|
123 |
+
|
124 |
+
|
125 |
+
def concat_datasets(datasets):
|
126 |
+
"""
|
127 |
+
Concatenates multiple datasets into a single dataset.
|
128 |
+
|
129 |
+
It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support
|
130 |
+
generic IterableDataset because it requires creating separate samplers.
|
131 |
+
|
132 |
+
Now only supports conctenating training datasets and assuming validation and testing
|
133 |
+
have only a single dataset. This is because metrics should not be computed on the concatenated
|
134 |
+
datasets.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
datasets: dict of torch.utils.data.Dataset objects by split.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets,
|
141 |
+
"val" and "test" remain the same.
|
142 |
+
|
143 |
+
If the input training datasets contain both map-style and DataPipeline datasets, returns
|
144 |
+
a tuple, where the first element is a concatenated map-style dataset and the second
|
145 |
+
element is a chained DataPipeline dataset.
|
146 |
+
|
147 |
+
"""
|
148 |
+
# concatenate datasets in the same split
|
149 |
+
for split_name in datasets:
|
150 |
+
if split_name != "train":
|
151 |
+
assert (
|
152 |
+
len(datasets[split_name]) == 1
|
153 |
+
), "Do not support multiple {} datasets.".format(split_name)
|
154 |
+
datasets[split_name] = datasets[split_name][0]
|
155 |
+
else:
|
156 |
+
iterable_datasets, map_datasets = [], []
|
157 |
+
for dataset in datasets[split_name]:
|
158 |
+
if isinstance(dataset, wds.DataPipeline):
|
159 |
+
logging.info(
|
160 |
+
"Dataset {} is IterableDataset, can't be concatenated.".format(
|
161 |
+
dataset
|
162 |
+
)
|
163 |
+
)
|
164 |
+
iterable_datasets.append(dataset)
|
165 |
+
elif isinstance(dataset, IterableDataset):
|
166 |
+
raise NotImplementedError(
|
167 |
+
"Do not support concatenation of generic IterableDataset."
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
map_datasets.append(dataset)
|
171 |
+
|
172 |
+
# if len(iterable_datasets) > 0:
|
173 |
+
# concatenate map-style datasets and iterable-style datasets separately
|
174 |
+
if len(iterable_datasets) > 1:
|
175 |
+
chained_datasets = (
|
176 |
+
ChainDataset(iterable_datasets)
|
177 |
+
)
|
178 |
+
elif len(iterable_datasets) == 1:
|
179 |
+
chained_datasets = iterable_datasets[0]
|
180 |
+
else:
|
181 |
+
chained_datasets = None
|
182 |
+
|
183 |
+
concat_datasets = (
|
184 |
+
ConcatDataset(map_datasets) if len(map_datasets) > 0 else None
|
185 |
+
)
|
186 |
+
|
187 |
+
train_datasets = concat_datasets, chained_datasets
|
188 |
+
train_datasets = tuple([x for x in train_datasets if x is not None])
|
189 |
+
train_datasets = (
|
190 |
+
train_datasets[0] if len(train_datasets) == 1 else train_datasets
|
191 |
+
)
|
192 |
+
|
193 |
+
datasets[split_name] = train_datasets
|
194 |
+
|
195 |
+
return datasets
|
196 |
+
|
video_llama/datasets/datasets/__init__.py
ADDED
File without changes
|
video_llama/datasets/datasets/base_dataset.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import json
|
9 |
+
from typing import Iterable
|
10 |
+
|
11 |
+
from torch.utils.data import Dataset, ConcatDataset
|
12 |
+
from torch.utils.data.dataloader import default_collate
|
13 |
+
|
14 |
+
|
15 |
+
class BaseDataset(Dataset):
|
16 |
+
def __init__(
|
17 |
+
self, vis_processor=None, text_processor=None, vis_root=None, ann_paths=[]
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
21 |
+
ann_root (string): directory to store the annotation file
|
22 |
+
"""
|
23 |
+
self.vis_root = vis_root
|
24 |
+
|
25 |
+
self.annotation = []
|
26 |
+
for ann_path in ann_paths:
|
27 |
+
self.annotation.extend(json.load(open(ann_path, "r"))['annotations'])
|
28 |
+
|
29 |
+
self.vis_processor = vis_processor
|
30 |
+
self.text_processor = text_processor
|
31 |
+
|
32 |
+
self._add_instance_ids()
|
33 |
+
|
34 |
+
def __len__(self):
|
35 |
+
return len(self.annotation)
|
36 |
+
|
37 |
+
def collater(self, samples):
|
38 |
+
return default_collate(samples)
|
39 |
+
|
40 |
+
def set_processors(self, vis_processor, text_processor):
|
41 |
+
self.vis_processor = vis_processor
|
42 |
+
self.text_processor = text_processor
|
43 |
+
|
44 |
+
def _add_instance_ids(self, key="instance_id"):
|
45 |
+
for idx, ann in enumerate(self.annotation):
|
46 |
+
ann[key] = str(idx)
|
47 |
+
|
48 |
+
|
49 |
+
class ConcatDataset(ConcatDataset):
|
50 |
+
def __init__(self, datasets: Iterable[Dataset]) -> None:
|
51 |
+
super().__init__(datasets)
|
52 |
+
|
53 |
+
def collater(self, samples):
|
54 |
+
# TODO For now only supports datasets with same underlying collater implementations
|
55 |
+
|
56 |
+
all_keys = set()
|
57 |
+
for s in samples:
|
58 |
+
all_keys.update(s)
|
59 |
+
|
60 |
+
shared_keys = all_keys
|
61 |
+
for s in samples:
|
62 |
+
shared_keys = shared_keys & set(s.keys())
|
63 |
+
|
64 |
+
samples_shared_keys = []
|
65 |
+
for s in samples:
|
66 |
+
samples_shared_keys.append({k: s[k] for k in s.keys() if k in shared_keys})
|
67 |
+
|
68 |
+
return self.datasets[0].collater(samples_shared_keys)
|
video_llama/datasets/datasets/caption_datasets.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
from collections import OrderedDict
|
10 |
+
|
11 |
+
from video_llama.datasets.datasets.base_dataset import BaseDataset
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
|
15 |
+
class __DisplMixin:
|
16 |
+
def displ_item(self, index):
|
17 |
+
sample, ann = self.__getitem__(index), self.annotation[index]
|
18 |
+
|
19 |
+
return OrderedDict(
|
20 |
+
{
|
21 |
+
"file": ann["image"],
|
22 |
+
"caption": ann["caption"],
|
23 |
+
"image": sample["image"],
|
24 |
+
}
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
class CaptionDataset(BaseDataset, __DisplMixin):
|
29 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
30 |
+
"""
|
31 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
32 |
+
ann_root (string): directory to store the annotation file
|
33 |
+
"""
|
34 |
+
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
35 |
+
|
36 |
+
self.img_ids = {}
|
37 |
+
n = 0
|
38 |
+
for ann in self.annotation:
|
39 |
+
img_id = ann["image_id"]
|
40 |
+
if img_id not in self.img_ids.keys():
|
41 |
+
self.img_ids[img_id] = n
|
42 |
+
n += 1
|
43 |
+
|
44 |
+
def __getitem__(self, index):
|
45 |
+
|
46 |
+
# TODO this assumes image input, not general enough
|
47 |
+
ann = self.annotation[index]
|
48 |
+
|
49 |
+
img_file = '{:0>12}.jpg'.format(ann["image_id"])
|
50 |
+
image_path = os.path.join(self.vis_root, img_file)
|
51 |
+
image = Image.open(image_path).convert("RGB")
|
52 |
+
|
53 |
+
image = self.vis_processor(image)
|
54 |
+
caption = self.text_processor(ann["caption"])
|
55 |
+
|
56 |
+
return {
|
57 |
+
"image": image,
|
58 |
+
"text_input": caption,
|
59 |
+
"image_id": self.img_ids[ann["image_id"]],
|
60 |
+
}
|
61 |
+
|
62 |
+
|
63 |
+
class CaptionEvalDataset(BaseDataset, __DisplMixin):
|
64 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
65 |
+
"""
|
66 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
67 |
+
ann_root (string): directory to store the annotation file
|
68 |
+
split (string): val or test
|
69 |
+
"""
|
70 |
+
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
71 |
+
|
72 |
+
def __getitem__(self, index):
|
73 |
+
|
74 |
+
ann = self.annotation[index]
|
75 |
+
|
76 |
+
image_path = os.path.join(self.vis_root, ann["image"])
|
77 |
+
image = Image.open(image_path).convert("RGB")
|
78 |
+
|
79 |
+
image = self.vis_processor(image)
|
80 |
+
|
81 |
+
return {
|
82 |
+
"image": image,
|
83 |
+
"image_id": ann["image_id"],
|
84 |
+
"instance_id": ann["instance_id"],
|
85 |
+
}
|
video_llama/datasets/datasets/cc_sbu_dataset.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import webdataset as wds
|
4 |
+
from video_llama.datasets.datasets.base_dataset import BaseDataset
|
5 |
+
from video_llama.datasets.datasets.caption_datasets import CaptionDataset
|
6 |
+
|
7 |
+
|
8 |
+
class CCSBUDataset(BaseDataset):
|
9 |
+
def __init__(self, vis_processor, text_processor, location):
|
10 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
11 |
+
|
12 |
+
self.inner_dataset = wds.DataPipeline(
|
13 |
+
wds.ResampledShards(location),
|
14 |
+
wds.tarfile_to_samples(handler=wds.warn_and_continue),
|
15 |
+
wds.shuffle(1000, handler=wds.warn_and_continue),
|
16 |
+
wds.decode("pilrgb", handler=wds.warn_and_continue),
|
17 |
+
wds.to_tuple("jpg", "json", handler=wds.warn_and_continue),
|
18 |
+
wds.map_tuple(self.vis_processor, handler=wds.warn_and_continue),
|
19 |
+
wds.map(self.to_dict, handler=wds.warn_and_continue),
|
20 |
+
)
|
21 |
+
|
22 |
+
def to_dict(self, sample):
|
23 |
+
return {
|
24 |
+
"image": sample[0],
|
25 |
+
"text_input": self.text_processor(sample[1]["caption"]),
|
26 |
+
"type":'image',
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class CCSBUAlignDataset(CaptionDataset):
|
31 |
+
|
32 |
+
def __getitem__(self, index):
|
33 |
+
|
34 |
+
# TODO this assumes image input, not general enough
|
35 |
+
ann = self.annotation[index]
|
36 |
+
|
37 |
+
img_file = '{}.jpg'.format(ann["image_id"])
|
38 |
+
image_path = os.path.join(self.vis_root, img_file)
|
39 |
+
image = Image.open(image_path).convert("RGB")
|
40 |
+
|
41 |
+
image = self.vis_processor(image)
|
42 |
+
caption = ann["caption"]
|
43 |
+
|
44 |
+
return {
|
45 |
+
"image": image,
|
46 |
+
"text_input": caption,
|
47 |
+
"image_id": self.img_ids[ann["image_id"]],
|
48 |
+
"type":'image',
|
49 |
+
}
|
video_llama/datasets/datasets/dataloader_utils.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import time
|
9 |
+
import random
|
10 |
+
import torch
|
11 |
+
from video_llama.datasets.data_utils import move_to_cuda
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
|
14 |
+
|
15 |
+
class MultiIterLoader:
|
16 |
+
"""
|
17 |
+
A simple wrapper for iterating over multiple iterators.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
loaders (List[Loader]): List of Iterator loaders.
|
21 |
+
ratios (List[float]): List of ratios to sample from each loader. If None, all loaders are sampled uniformly.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, loaders, ratios=None):
|
25 |
+
# assert all loaders has __next__ method
|
26 |
+
for loader in loaders:
|
27 |
+
assert hasattr(
|
28 |
+
loader, "__next__"
|
29 |
+
), "Loader {} has no __next__ method.".format(loader)
|
30 |
+
|
31 |
+
if ratios is None:
|
32 |
+
ratios = [1.0] * len(loaders)
|
33 |
+
else:
|
34 |
+
assert len(ratios) == len(loaders)
|
35 |
+
ratios = [float(ratio) / sum(ratios) for ratio in ratios]
|
36 |
+
|
37 |
+
self.loaders = loaders
|
38 |
+
self.ratios = ratios
|
39 |
+
|
40 |
+
def __next__(self):
|
41 |
+
# random sample from each loader by ratio
|
42 |
+
loader_idx = random.choices(range(len(self.loaders)), self.ratios, k=1)[0]
|
43 |
+
return next(self.loaders[loader_idx])
|
44 |
+
|
45 |
+
|
46 |
+
class PrefetchLoader(object):
|
47 |
+
"""
|
48 |
+
Modified from https://github.com/ChenRocks/UNITER.
|
49 |
+
|
50 |
+
overlap compute and cuda data transfer
|
51 |
+
(copied and then modified from nvidia apex)
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, loader):
|
55 |
+
self.loader = loader
|
56 |
+
self.stream = torch.cuda.Stream()
|
57 |
+
|
58 |
+
def __iter__(self):
|
59 |
+
loader_it = iter(self.loader)
|
60 |
+
self.preload(loader_it)
|
61 |
+
batch = self.next(loader_it)
|
62 |
+
while batch is not None:
|
63 |
+
is_tuple = isinstance(batch, tuple)
|
64 |
+
if is_tuple:
|
65 |
+
task, batch = batch
|
66 |
+
|
67 |
+
if is_tuple:
|
68 |
+
yield task, batch
|
69 |
+
else:
|
70 |
+
yield batch
|
71 |
+
batch = self.next(loader_it)
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.loader)
|
75 |
+
|
76 |
+
def preload(self, it):
|
77 |
+
try:
|
78 |
+
self.batch = next(it)
|
79 |
+
except StopIteration:
|
80 |
+
self.batch = None
|
81 |
+
return
|
82 |
+
# if record_stream() doesn't work, another option is to make sure
|
83 |
+
# device inputs are created on the main stream.
|
84 |
+
# self.next_input_gpu = torch.empty_like(self.next_input,
|
85 |
+
# device='cuda')
|
86 |
+
# self.next_target_gpu = torch.empty_like(self.next_target,
|
87 |
+
# device='cuda')
|
88 |
+
# Need to make sure the memory allocated for next_* is not still in use
|
89 |
+
# by the main stream at the time we start copying to next_*:
|
90 |
+
# self.stream.wait_stream(torch.cuda.current_stream())
|
91 |
+
with torch.cuda.stream(self.stream):
|
92 |
+
self.batch = move_to_cuda(self.batch)
|
93 |
+
# more code for the alternative if record_stream() doesn't work:
|
94 |
+
# copy_ will record the use of the pinned source tensor in this
|
95 |
+
# side stream.
|
96 |
+
# self.next_input_gpu.copy_(self.next_input, non_blocking=True)
|
97 |
+
# self.next_target_gpu.copy_(self.next_target, non_blocking=True)
|
98 |
+
# self.next_input = self.next_input_gpu
|
99 |
+
# self.next_target = self.next_target_gpu
|
100 |
+
|
101 |
+
def next(self, it):
|
102 |
+
torch.cuda.current_stream().wait_stream(self.stream)
|
103 |
+
batch = self.batch
|
104 |
+
if batch is not None:
|
105 |
+
record_cuda_stream(batch)
|
106 |
+
self.preload(it)
|
107 |
+
return batch
|
108 |
+
|
109 |
+
def __getattr__(self, name):
|
110 |
+
method = self.loader.__getattribute__(name)
|
111 |
+
return method
|
112 |
+
|
113 |
+
|
114 |
+
def record_cuda_stream(batch):
|
115 |
+
if isinstance(batch, torch.Tensor):
|
116 |
+
batch.record_stream(torch.cuda.current_stream())
|
117 |
+
elif isinstance(batch, list) or isinstance(batch, tuple):
|
118 |
+
for t in batch:
|
119 |
+
record_cuda_stream(t)
|
120 |
+
elif isinstance(batch, dict):
|
121 |
+
for t in batch.values():
|
122 |
+
record_cuda_stream(t)
|
123 |
+
else:
|
124 |
+
pass
|
125 |
+
|
126 |
+
|
127 |
+
class IterLoader:
|
128 |
+
"""
|
129 |
+
A wrapper to convert DataLoader as an infinite iterator.
|
130 |
+
|
131 |
+
Modified from:
|
132 |
+
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
|
136 |
+
self._dataloader = dataloader
|
137 |
+
self.iter_loader = iter(self._dataloader)
|
138 |
+
self._use_distributed = use_distributed
|
139 |
+
self._epoch = 0
|
140 |
+
|
141 |
+
@property
|
142 |
+
def epoch(self) -> int:
|
143 |
+
return self._epoch
|
144 |
+
|
145 |
+
def __next__(self):
|
146 |
+
try:
|
147 |
+
data = next(self.iter_loader)
|
148 |
+
except StopIteration:
|
149 |
+
self._epoch += 1
|
150 |
+
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
|
151 |
+
self._dataloader.sampler.set_epoch(self._epoch)
|
152 |
+
time.sleep(2) # Prevent possible deadlock during epoch transition
|
153 |
+
self.iter_loader = iter(self._dataloader)
|
154 |
+
data = next(self.iter_loader)
|
155 |
+
|
156 |
+
return data
|
157 |
+
|
158 |
+
def __iter__(self):
|
159 |
+
return self
|
160 |
+
|
161 |
+
def __len__(self):
|
162 |
+
return len(self._dataloader)
|
video_llama/datasets/datasets/laion_dataset.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import webdataset as wds
|
9 |
+
from video_llama.datasets.datasets.base_dataset import BaseDataset
|
10 |
+
|
11 |
+
|
12 |
+
class LaionDataset(BaseDataset):
|
13 |
+
def __init__(self, vis_processor, text_processor, location):
|
14 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
15 |
+
|
16 |
+
self.inner_dataset = wds.DataPipeline(
|
17 |
+
wds.ResampledShards(location),
|
18 |
+
wds.tarfile_to_samples(handler=wds.warn_and_continue),
|
19 |
+
wds.shuffle(1000, handler=wds.warn_and_continue),
|
20 |
+
wds.decode("pilrgb", handler=wds.warn_and_continue),
|
21 |
+
wds.to_tuple("jpg", "json", handler=wds.warn_and_continue),
|
22 |
+
wds.map_tuple(self.vis_processor, handler=wds.warn_and_continue),
|
23 |
+
wds.map(self.to_dict, handler=wds.warn_and_continue),
|
24 |
+
)
|
25 |
+
|
26 |
+
def to_dict(self, sample):
|
27 |
+
return {
|
28 |
+
"image": sample[0],
|
29 |
+
"text_input": self.text_processor(sample[1]["caption"]),
|
30 |
+
}
|
31 |
+
|
video_llama/datasets/datasets/llava_instruct_dataset.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from video_llama.datasets.datasets.base_dataset import BaseDataset
|
3 |
+
from video_llama.datasets.datasets.caption_datasets import CaptionDataset
|
4 |
+
import pandas as pd
|
5 |
+
import decord
|
6 |
+
from decord import VideoReader
|
7 |
+
import random
|
8 |
+
import torch
|
9 |
+
from torch.utils.data.dataloader import default_collate
|
10 |
+
from PIL import Image
|
11 |
+
from typing import Dict, Optional, Sequence
|
12 |
+
import transformers
|
13 |
+
import pathlib
|
14 |
+
import json
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
16 |
+
from video_llama.conversation.conversation_video import Conversation,SeparatorStyle
|
17 |
+
DEFAULT_IMAGE_PATCH_TOKEN = '<ImageHere>'
|
18 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
19 |
+
import copy
|
20 |
+
IGNORE_INDEX = -100
|
21 |
+
image_conversation = Conversation(
|
22 |
+
system="",
|
23 |
+
roles=("Human", "Assistant"),
|
24 |
+
messages=[],
|
25 |
+
offset=0,
|
26 |
+
sep_style=SeparatorStyle.SINGLE,
|
27 |
+
sep="###",
|
28 |
+
)
|
29 |
+
IGNORE_INDEX = -100
|
30 |
+
|
31 |
+
class Instruct_Dataset(BaseDataset):
|
32 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_root,num_video_query_token=32,tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/',data_type = 'image'):
|
33 |
+
"""
|
34 |
+
vis_root (string): Root directory of Llava images (e.g. webvid_eval/video/)
|
35 |
+
ann_root (string): Root directory of video (e.g. webvid_eval/annotations/)
|
36 |
+
split (string): val or test
|
37 |
+
"""
|
38 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
39 |
+
|
40 |
+
data_path = pathlib.Path(ann_root)
|
41 |
+
with data_path.open(encoding='utf-8') as f:
|
42 |
+
self.annotation = json.load(f)
|
43 |
+
|
44 |
+
self.vis_root = vis_root
|
45 |
+
self.resize_size = 224
|
46 |
+
self.num_frm = 8
|
47 |
+
self.tokenizer = LlamaTokenizer.from_pretrained(tokenizer_name, use_fast=False)
|
48 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
49 |
+
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
50 |
+
self.num_video_query_token = num_video_query_token
|
51 |
+
self.IMAGE_PATCH_TOKEN_ID = self.tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN]
|
52 |
+
|
53 |
+
self.transform = AlproVideoTrainProcessor(
|
54 |
+
image_size=self.resize_size, n_frms = self.num_frm
|
55 |
+
).transform
|
56 |
+
self.data_type = data_type
|
57 |
+
|
58 |
+
def _get_image_path(self, sample):
|
59 |
+
rel_video_fp ='COCO_train2014_' + sample['image']
|
60 |
+
full_video_fp = os.path.join(self.vis_root, rel_video_fp)
|
61 |
+
return full_video_fp
|
62 |
+
|
63 |
+
def __getitem__(self, index):
|
64 |
+
num_retries = 10 # skip error videos
|
65 |
+
for _ in range(num_retries):
|
66 |
+
try:
|
67 |
+
sample = self.annotation[index]
|
68 |
+
|
69 |
+
image_path = self._get_image_path(sample)
|
70 |
+
conversation_list = sample['conversations']
|
71 |
+
image = Image.open(image_path).convert("RGB")
|
72 |
+
|
73 |
+
image = self.vis_processor(image)
|
74 |
+
# text = self.text_processor(text)
|
75 |
+
sources = preprocess_multimodal(copy.deepcopy(conversation_list), None, cur_token_len=self.num_video_query_token)
|
76 |
+
data_dict = preprocess(
|
77 |
+
sources,
|
78 |
+
self.tokenizer)
|
79 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0],
|
80 |
+
labels=data_dict["labels"][0])
|
81 |
+
|
82 |
+
# image exist in the data
|
83 |
+
data_dict['image'] = image
|
84 |
+
except:
|
85 |
+
print(f"Failed to load examples with image: {image_path}. "
|
86 |
+
f"Will randomly sample an example as a replacement.")
|
87 |
+
index = random.randint(0, len(self) - 1)
|
88 |
+
continue
|
89 |
+
break
|
90 |
+
else:
|
91 |
+
raise RuntimeError(f"Failed to fetch image after {num_retries} retries.")
|
92 |
+
# "image_id" is kept to stay compatible with the COCO evaluation format
|
93 |
+
return {
|
94 |
+
"image": image,
|
95 |
+
"text_input": data_dict["input_ids"],
|
96 |
+
"labels": data_dict["labels"],
|
97 |
+
"type":'image',
|
98 |
+
}
|
99 |
+
|
100 |
+
def __len__(self):
|
101 |
+
return len(self.annotation)
|
102 |
+
|
103 |
+
def collater(self, instances):
|
104 |
+
input_ids, labels = tuple([instance[key] for instance in instances]
|
105 |
+
for key in ("text_input", "labels"))
|
106 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
107 |
+
input_ids,
|
108 |
+
batch_first=True,
|
109 |
+
padding_value=self.tokenizer.pad_token_id)
|
110 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
111 |
+
batch_first=True,
|
112 |
+
padding_value=IGNORE_INDEX)
|
113 |
+
batch = dict(
|
114 |
+
input_ids=input_ids,
|
115 |
+
labels=labels,
|
116 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
117 |
+
)
|
118 |
+
|
119 |
+
if 'image' in instances[0]:
|
120 |
+
images = [instance['image'] for instance in instances]
|
121 |
+
if all(x is not None and x.shape == images[0].shape for x in images):
|
122 |
+
batch['images'] = torch.stack(images)
|
123 |
+
else:
|
124 |
+
batch['images'] = images
|
125 |
+
batch['conv_type'] = 'multi'
|
126 |
+
return batch
|
127 |
+
|
128 |
+
|
129 |
+
def preprocess_multimodal(
|
130 |
+
conversation_list: Sequence[str],
|
131 |
+
multimodal_cfg: dict,
|
132 |
+
cur_token_len: int,
|
133 |
+
) -> Dict:
|
134 |
+
# 将conversational list中
|
135 |
+
is_multimodal = True
|
136 |
+
# image_token_len = multimodal_cfg['image_token_len']
|
137 |
+
image_token_len = cur_token_len
|
138 |
+
|
139 |
+
for sentence in conversation_list:
|
140 |
+
replace_token = '<Image>'+DEFAULT_IMAGE_PATCH_TOKEN * image_token_len+'/<Image>'
|
141 |
+
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
142 |
+
|
143 |
+
return [conversation_list]
|
144 |
+
|
145 |
+
def _add_speaker_and_signal(header, source, get_conversation=True):
|
146 |
+
"""Add speaker and start/end signal on each round."""
|
147 |
+
BEGIN_SIGNAL = "###"
|
148 |
+
END_SIGNAL = "\n"
|
149 |
+
conversation = header
|
150 |
+
for sentence in source:
|
151 |
+
from_str = sentence["from"]
|
152 |
+
if from_str.lower() == "human":
|
153 |
+
from_str = image_conversation.roles[0]
|
154 |
+
elif from_str.lower() == "gpt":
|
155 |
+
from_str = image_conversation.roles[1]
|
156 |
+
else:
|
157 |
+
from_str = 'unknown'
|
158 |
+
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
159 |
+
sentence["value"] + END_SIGNAL)
|
160 |
+
if get_conversation:
|
161 |
+
conversation += sentence["value"]
|
162 |
+
conversation += BEGIN_SIGNAL
|
163 |
+
return conversation
|
164 |
+
|
165 |
+
def _tokenize_fn(strings: Sequence[str],
|
166 |
+
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
167 |
+
"""Tokenize a list of strings."""
|
168 |
+
tokenized_list = [
|
169 |
+
tokenizer(
|
170 |
+
text,
|
171 |
+
return_tensors="pt",
|
172 |
+
padding="longest",
|
173 |
+
max_length=512,
|
174 |
+
truncation=True,
|
175 |
+
) for text in strings
|
176 |
+
]
|
177 |
+
input_ids = labels = [
|
178 |
+
tokenized.input_ids[0] for tokenized in tokenized_list
|
179 |
+
]
|
180 |
+
input_ids_lens = labels_lens = [
|
181 |
+
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
182 |
+
for tokenized in tokenized_list
|
183 |
+
]
|
184 |
+
return dict(
|
185 |
+
input_ids=input_ids,
|
186 |
+
labels=labels,
|
187 |
+
input_ids_lens=input_ids_lens,
|
188 |
+
labels_lens=labels_lens,
|
189 |
+
)
|
190 |
+
|
191 |
+
def preprocess(
|
192 |
+
sources: Sequence[str],
|
193 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
194 |
+
) -> Dict:
|
195 |
+
"""
|
196 |
+
Given a list of sources, each is a conversation list. This transform:
|
197 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
198 |
+
2. Concatenate conversations together;
|
199 |
+
3. Tokenize the concatenated conversation;
|
200 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
201 |
+
"""
|
202 |
+
# add end signal and concatenate together
|
203 |
+
conversations = []
|
204 |
+
for source in sources:
|
205 |
+
header = f"{image_conversation.system}\n\n"
|
206 |
+
conversation = _add_speaker_and_signal(header, source)
|
207 |
+
conversations.append(conversation)
|
208 |
+
# tokenize conversations
|
209 |
+
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
210 |
+
input_ids = conversations_tokenized["input_ids"]
|
211 |
+
targets = copy.deepcopy(input_ids)
|
212 |
+
for target, source in zip(targets, sources):
|
213 |
+
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source],
|
214 |
+
tokenizer)["input_ids_lens"]
|
215 |
+
speakers = [sentence["from"] for sentence in source]
|
216 |
+
_mask_targets(target, tokenized_lens, speakers)
|
217 |
+
|
218 |
+
return dict(input_ids=input_ids, labels=targets)
|
219 |
+
|
220 |
+
def _mask_targets(target, tokenized_lens, speakers):
|
221 |
+
# cur_idx = 0
|
222 |
+
cur_idx = tokenized_lens[0]
|
223 |
+
tokenized_lens = tokenized_lens[1:]
|
224 |
+
target[:cur_idx] = IGNORE_INDEX
|
225 |
+
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
226 |
+
if speaker == "human":
|
227 |
+
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
228 |
+
cur_idx += tokenized_len
|
video_llama/datasets/datasets/video_instruct_dataset.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from video_llama.datasets.datasets.base_dataset import BaseDataset
|
3 |
+
from video_llama.datasets.datasets.caption_datasets import CaptionDataset
|
4 |
+
import pandas as pd
|
5 |
+
import decord
|
6 |
+
from decord import VideoReader
|
7 |
+
import random
|
8 |
+
import torch
|
9 |
+
from torch.utils.data.dataloader import default_collate
|
10 |
+
from PIL import Image
|
11 |
+
from typing import Dict, Optional, Sequence
|
12 |
+
import transformers
|
13 |
+
import pathlib
|
14 |
+
import json
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
16 |
+
import copy
|
17 |
+
from video_llama.processors import transforms_video,AlproVideoTrainProcessor
|
18 |
+
from torchvision import transforms
|
19 |
+
from video_llama.processors.video_processor import ToTHWC,ToUint8,load_video
|
20 |
+
from video_llama.conversation.conversation_video import Conversation,SeparatorStyle
|
21 |
+
|
22 |
+
DEFAULT_IMAGE_PATCH_TOKEN = '<ImageHere>'
|
23 |
+
video_conversation = Conversation(
|
24 |
+
system="",
|
25 |
+
roles=("Human", "Assistant"),
|
26 |
+
messages=[],
|
27 |
+
offset=0,
|
28 |
+
sep_style=SeparatorStyle.SINGLE,
|
29 |
+
sep="###",
|
30 |
+
)
|
31 |
+
IGNORE_INDEX = -100
|
32 |
+
|
33 |
+
class Video_Instruct_Dataset(BaseDataset):
|
34 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_root,num_video_query_token=32,tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/',data_type = 'video'):
|
35 |
+
"""
|
36 |
+
vis_root (string): Root directory of Llava images (e.g. webvid_eval/video/)
|
37 |
+
ann_root (string): Root directory of video (e.g. webvid_eval/annotations/)
|
38 |
+
split (string): val or test
|
39 |
+
"""
|
40 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
41 |
+
|
42 |
+
data_path = pathlib.Path(ann_root)
|
43 |
+
with data_path.open(encoding='utf-8') as f:
|
44 |
+
self.annotation = json.load(f)
|
45 |
+
|
46 |
+
self.num_video_query_token = num_video_query_token
|
47 |
+
self.vis_root = vis_root
|
48 |
+
self.resize_size = 224
|
49 |
+
self.num_frm = 8
|
50 |
+
self.tokenizer = LlamaTokenizer.from_pretrained(tokenizer_name, use_fast=False)
|
51 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
52 |
+
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
53 |
+
self.IMAGE_PATCH_TOKEN_ID = self.tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN]
|
54 |
+
|
55 |
+
self.transform = AlproVideoTrainProcessor(
|
56 |
+
image_size=self.resize_size, n_frms = self.num_frm
|
57 |
+
).transform
|
58 |
+
self.data_type = data_type
|
59 |
+
|
60 |
+
def _get_video_path(self, sample):
|
61 |
+
rel_video_fp = sample['video']
|
62 |
+
full_video_fp = os.path.join(self.vis_root, rel_video_fp)
|
63 |
+
return full_video_fp
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
num_retries = 10 # skip error videos
|
67 |
+
for _ in range(num_retries):
|
68 |
+
try:
|
69 |
+
sample = self.annotation[index]
|
70 |
+
|
71 |
+
video_path = self._get_video_path(sample)
|
72 |
+
conversation_list = sample['QA']
|
73 |
+
|
74 |
+
video, msg = load_video(
|
75 |
+
video_path=video_path,
|
76 |
+
n_frms=self.num_frm,
|
77 |
+
height=self.resize_size,
|
78 |
+
width=self.resize_size,
|
79 |
+
sampling ="uniform", return_msg = True
|
80 |
+
)
|
81 |
+
video = self.transform(video)
|
82 |
+
if 'cn' in self.data_type:
|
83 |
+
msg = ""
|
84 |
+
# 添加视频<DEFAULT_IMAGE_PATCH_TOKEN>,以及msg到convsation list 0
|
85 |
+
sources = preprocess_multimodal(copy.deepcopy(conversation_list), None, cur_token_len=self.num_video_query_token,msg = msg)
|
86 |
+
new_sources = convert_source_vicuna_format(sources)
|
87 |
+
|
88 |
+
data_dict = preprocess(
|
89 |
+
new_sources,
|
90 |
+
self.tokenizer)
|
91 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0],
|
92 |
+
labels=data_dict["labels"][0])
|
93 |
+
# image exist in the data
|
94 |
+
data_dict['image'] = video
|
95 |
+
except:
|
96 |
+
print(f"Failed to load examples with video: {video_path}. "
|
97 |
+
f"Will randomly sample an example as a replacement.")
|
98 |
+
index = random.randint(0, len(self) - 1)
|
99 |
+
continue
|
100 |
+
break
|
101 |
+
else:
|
102 |
+
raise RuntimeError(f"Failed to fetch video after {num_retries} retries.")
|
103 |
+
# "image_id" is kept to stay compatible with the COCO evaluation format
|
104 |
+
return {
|
105 |
+
"image": video,
|
106 |
+
"text_input": data_dict["input_ids"],
|
107 |
+
"labels": data_dict["labels"],
|
108 |
+
"type":'video',
|
109 |
+
}
|
110 |
+
|
111 |
+
def __len__(self):
|
112 |
+
return len(self.annotation)
|
113 |
+
|
114 |
+
def collater(self, instances):
|
115 |
+
input_ids, labels = tuple([instance[key] for instance in instances]
|
116 |
+
for key in ("text_input", "labels"))
|
117 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
118 |
+
input_ids,
|
119 |
+
batch_first=True,
|
120 |
+
padding_value=self.tokenizer.pad_token_id)
|
121 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
122 |
+
batch_first=True,
|
123 |
+
padding_value=IGNORE_INDEX)
|
124 |
+
batch = dict(
|
125 |
+
input_ids=input_ids,
|
126 |
+
labels=labels,
|
127 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
128 |
+
)
|
129 |
+
|
130 |
+
if 'image' in instances[0]:
|
131 |
+
images = [instance['image'] for instance in instances]
|
132 |
+
if all(x is not None and x.shape == images[0].shape for x in images):
|
133 |
+
batch['images'] = torch.stack(images)
|
134 |
+
else:
|
135 |
+
batch['images'] = images
|
136 |
+
batch['conv_type'] = 'multi'
|
137 |
+
return batch
|
138 |
+
|
139 |
+
def convert_source_vicuna_format(sources):
|
140 |
+
new_sources = []
|
141 |
+
for source in sources:
|
142 |
+
new_source = []
|
143 |
+
for i, sentence in enumerate(source):
|
144 |
+
role_0_msg = sentence['q']
|
145 |
+
role_1_msg = sentence['a']
|
146 |
+
new_source.append({
|
147 |
+
'from':'human',
|
148 |
+
'value': role_0_msg,
|
149 |
+
})
|
150 |
+
new_source.append({
|
151 |
+
'from':'gpt',
|
152 |
+
'value': role_1_msg,
|
153 |
+
})
|
154 |
+
new_sources.append(new_source)
|
155 |
+
return new_sources
|
156 |
+
|
157 |
+
def preprocess_multimodal(
|
158 |
+
conversation_list: Sequence[str],
|
159 |
+
multimodal_cfg: dict,
|
160 |
+
cur_token_len: int,
|
161 |
+
msg=''
|
162 |
+
) -> Dict:
|
163 |
+
# 将conversational list中
|
164 |
+
is_multimodal = True
|
165 |
+
# image_token_len = multimodal_cfg['image_token_len']
|
166 |
+
image_token_len = cur_token_len
|
167 |
+
conversation_list[0]["q"] = "<Video>"+DEFAULT_IMAGE_PATCH_TOKEN * image_token_len +"</Video> " + msg + conversation_list[0]["q"]
|
168 |
+
return [conversation_list]
|
169 |
+
|
170 |
+
def _add_speaker_and_signal(header, source, get_conversation=True):
|
171 |
+
"""Add speaker and start/end signal on each round."""
|
172 |
+
BEGIN_SIGNAL = "###"
|
173 |
+
END_SIGNAL = "\n"
|
174 |
+
conversation = header
|
175 |
+
for sentence in source:
|
176 |
+
from_str = sentence["from"]
|
177 |
+
if from_str.lower() == "human":
|
178 |
+
from_str = video_conversation.roles[0]
|
179 |
+
elif from_str.lower() == "gpt":
|
180 |
+
from_str = video_conversation.roles[1]
|
181 |
+
else:
|
182 |
+
from_str = 'unknown'
|
183 |
+
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
184 |
+
sentence["value"] + END_SIGNAL)
|
185 |
+
if get_conversation:
|
186 |
+
conversation += sentence["value"]
|
187 |
+
conversation += BEGIN_SIGNAL
|
188 |
+
return conversation
|
189 |
+
|
190 |
+
def _tokenize_fn(strings: Sequence[str],
|
191 |
+
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
192 |
+
"""Tokenize a list of strings."""
|
193 |
+
tokenized_list = [
|
194 |
+
tokenizer(
|
195 |
+
text,
|
196 |
+
return_tensors="pt",
|
197 |
+
padding="longest",
|
198 |
+
max_length=512,
|
199 |
+
truncation=True,
|
200 |
+
) for text in strings
|
201 |
+
]
|
202 |
+
input_ids = labels = [
|
203 |
+
tokenized.input_ids[0] for tokenized in tokenized_list
|
204 |
+
]
|
205 |
+
input_ids_lens = labels_lens = [
|
206 |
+
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
207 |
+
for tokenized in tokenized_list
|
208 |
+
]
|
209 |
+
return dict(
|
210 |
+
input_ids=input_ids,
|
211 |
+
labels=labels,
|
212 |
+
input_ids_lens=input_ids_lens,
|
213 |
+
labels_lens=labels_lens,
|
214 |
+
)
|
215 |
+
|
216 |
+
def preprocess(
|
217 |
+
sources: Sequence[str],
|
218 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
219 |
+
) -> Dict:
|
220 |
+
"""
|
221 |
+
Given a list of sources, each is a conversation list. This transform:
|
222 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
223 |
+
2. Concatenate conversations together;
|
224 |
+
3. Tokenize the concatenated conversation;
|
225 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
226 |
+
"""
|
227 |
+
# add end signal and concatenate together
|
228 |
+
conversations = []
|
229 |
+
for source in sources:
|
230 |
+
header = f"{video_conversation.system}\n\n"
|
231 |
+
conversation = _add_speaker_and_signal(header, source)
|
232 |
+
conversations.append(conversation)
|
233 |
+
# tokenize conversations
|
234 |
+
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
235 |
+
input_ids = conversations_tokenized["input_ids"]
|
236 |
+
targets = copy.deepcopy(input_ids)
|
237 |
+
for target, source in zip(targets, sources):
|
238 |
+
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source],
|
239 |
+
tokenizer)["input_ids_lens"]
|
240 |
+
speakers = [sentence["from"] for sentence in source]
|
241 |
+
_mask_targets(target, tokenized_lens, speakers)
|
242 |
+
|
243 |
+
return dict(input_ids=input_ids, labels=targets)
|
244 |
+
|
245 |
+
def _mask_targets(target, tokenized_lens, speakers):
|
246 |
+
# cur_idx = 0
|
247 |
+
cur_idx = tokenized_lens[0]
|
248 |
+
tokenized_lens = tokenized_lens[1:]
|
249 |
+
target[:cur_idx] = IGNORE_INDEX
|
250 |
+
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
251 |
+
if speaker == "human":
|
252 |
+
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
253 |
+
cur_idx += tokenized_len
|
video_llama/datasets/datasets/webvid_datasets.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
3 |
+
All rights reserved.
|
4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
5 |
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
from video_llama.datasets.datasets.base_dataset import BaseDataset
|
10 |
+
from video_llama.datasets.datasets.caption_datasets import CaptionDataset
|
11 |
+
import pandas as pd
|
12 |
+
import decord
|
13 |
+
from decord import VideoReader
|
14 |
+
import random
|
15 |
+
import torch
|
16 |
+
from torch.utils.data.dataloader import default_collate
|
17 |
+
class WebvidDataset(BaseDataset):
|
18 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_root):
|
19 |
+
"""
|
20 |
+
vis_root (string): Root directory of video (e.g. webvid_eval/video/)
|
21 |
+
ann_root (string): Root directory of video (e.g. webvid_eval/annotations/)
|
22 |
+
split (string): val or test
|
23 |
+
"""
|
24 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
25 |
+
|
26 |
+
|
27 |
+
# 读取一个路径下所有的
|
28 |
+
|
29 |
+
ts_df = []
|
30 |
+
for file_name in os.listdir(ann_root):
|
31 |
+
if file_name.endswith('.csv'):
|
32 |
+
df = pd.read_csv(os.path.join(ann_root, file_name))
|
33 |
+
ts_df.append(df)
|
34 |
+
|
35 |
+
merged_df = pd.concat(ts_df)
|
36 |
+
self.annotation = merged_df
|
37 |
+
self.vis_root = vis_root
|
38 |
+
self.resize_size = 224
|
39 |
+
self.num_frm = 8
|
40 |
+
self.frm_sampling_strategy = 'headtail'
|
41 |
+
|
42 |
+
def _get_video_path(self, sample):
|
43 |
+
rel_video_fp = os.path.join(sample['page_dir'], str(sample['videoid']) + '.mp4')
|
44 |
+
full_video_fp = os.path.join(self.vis_root, rel_video_fp)
|
45 |
+
return full_video_fp
|
46 |
+
|
47 |
+
def __getitem__(self, index):
|
48 |
+
num_retries = 10 # skip error videos
|
49 |
+
for _ in range(num_retries):
|
50 |
+
sample = self.annotation.iloc[index]
|
51 |
+
sample_dict = sample.to_dict()
|
52 |
+
video_id = sample_dict['videoid']
|
53 |
+
|
54 |
+
if 'name' in sample_dict.keys():
|
55 |
+
text = sample_dict['name'].strip()
|
56 |
+
else:
|
57 |
+
raise NotImplementedError("Un-supported text annotation format.")
|
58 |
+
|
59 |
+
# fetch video
|
60 |
+
video_path = self._get_video_path(sample_dict)
|
61 |
+
# if os.path.exists(video_path):
|
62 |
+
try:
|
63 |
+
video = self.vis_processor(video_path)
|
64 |
+
except:
|
65 |
+
print(f"Failed to load examples with video: {video_path}. "
|
66 |
+
f"Will randomly sample an example as a replacement.")
|
67 |
+
index = random.randint(0, len(self) - 1)
|
68 |
+
continue
|
69 |
+
caption = self.text_processor(text)
|
70 |
+
|
71 |
+
# print(video.size())
|
72 |
+
if video is None or caption is None \
|
73 |
+
or video.size()!=torch.Size([3,self.vis_processor.n_frms,224,224]):
|
74 |
+
print(f"Failed to load examples with video: {video_path}. "
|
75 |
+
f"Will randomly sample an example as a replacement.")
|
76 |
+
index = random.randint(0, len(self) - 1)
|
77 |
+
continue
|
78 |
+
else:
|
79 |
+
break
|
80 |
+
else:
|
81 |
+
raise RuntimeError(f"Failed to fetch video after {num_retries} retries.")
|
82 |
+
# "image_id" is kept to stay compatible with the COCO evaluation format
|
83 |
+
return {
|
84 |
+
"image": video,
|
85 |
+
"text_input": caption,
|
86 |
+
"type":'video',
|
87 |
+
}
|
88 |
+
|
89 |
+
def __len__(self):
|
90 |
+
return len(self.annotation)
|
91 |
+
|
92 |
+
# def collater(self, samples):
|
93 |
+
# new_result = {}
|
94 |
+
# new_result['image'] = default_collate( [sample["image"] for sample in samples])
|
95 |
+
# new_result['text_input'] = default_collate( [sample["text_input"] for sample in samples])
|
96 |
+
# return new_result
|
97 |
+
|
98 |
+
class WebvidDatasetEvalDataset(BaseDataset):
|
99 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
100 |
+
"""
|
101 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
102 |
+
ann_root (string): directory to store the annotation file
|
103 |
+
split (string): val or test
|
104 |
+
"""
|
105 |
+
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
106 |
+
|
107 |
+
def __getitem__(self, index):
|
108 |
+
|
109 |
+
ann = self.annotation[index]
|
110 |
+
|
111 |
+
vname = ann["video"]
|
112 |
+
video_path = os.path.join(self.vis_root, vname)
|
113 |
+
|
114 |
+
video = self.vis_processor(video_path)
|
115 |
+
|
116 |
+
return {
|
117 |
+
"video": video,
|
118 |
+
"image_id": ann["image_id"],
|
119 |
+
"instance_id": ann["instance_id"],
|
120 |
+
}
|
121 |
+
|
122 |
+
|
video_llama/models/Qformer.py
ADDED
@@ -0,0 +1,1217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from salesforce@LAVIS. Below is the original copyright:
|
3 |
+
* Copyright (c) 2023, salesforce.com, inc.
|
4 |
+
* All rights reserved.
|
5 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
6 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
7 |
+
* By Junnan Li
|
8 |
+
* Based on huggingface code base
|
9 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
10 |
+
"""
|
11 |
+
|
12 |
+
import math
|
13 |
+
import os
|
14 |
+
import warnings
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Optional, Tuple, Dict, Any
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import Tensor, device, dtype, nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.file_utils import (
|
27 |
+
ModelOutput,
|
28 |
+
)
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
+
CausalLMOutputWithCrossAttentions,
|
33 |
+
MaskedLMOutput,
|
34 |
+
MultipleChoiceModelOutput,
|
35 |
+
NextSentencePredictorOutput,
|
36 |
+
QuestionAnsweringModelOutput,
|
37 |
+
SequenceClassifierOutput,
|
38 |
+
TokenClassifierOutput,
|
39 |
+
)
|
40 |
+
from transformers.modeling_utils import (
|
41 |
+
PreTrainedModel,
|
42 |
+
apply_chunking_to_forward,
|
43 |
+
find_pruneable_heads_and_indices,
|
44 |
+
prune_linear_layer,
|
45 |
+
)
|
46 |
+
from transformers.utils import logging
|
47 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class BertEmbeddings(nn.Module):
|
53 |
+
"""Construct the embeddings from word and position embeddings."""
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.word_embeddings = nn.Embedding(
|
58 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
59 |
+
)
|
60 |
+
self.position_embeddings = nn.Embedding(
|
61 |
+
config.max_position_embeddings, config.hidden_size
|
62 |
+
)
|
63 |
+
|
64 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
65 |
+
# any TensorFlow checkpoint file
|
66 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
67 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
68 |
+
|
69 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
70 |
+
self.register_buffer(
|
71 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
72 |
+
)
|
73 |
+
self.position_embedding_type = getattr(
|
74 |
+
config, "position_embedding_type", "absolute"
|
75 |
+
)
|
76 |
+
|
77 |
+
self.config = config
|
78 |
+
|
79 |
+
def forward(
|
80 |
+
self,
|
81 |
+
input_ids=None,
|
82 |
+
position_ids=None,
|
83 |
+
query_embeds=None,
|
84 |
+
past_key_values_length=0,
|
85 |
+
):
|
86 |
+
if input_ids is not None:
|
87 |
+
seq_length = input_ids.size()[1]
|
88 |
+
else:
|
89 |
+
seq_length = 0
|
90 |
+
|
91 |
+
if position_ids is None:
|
92 |
+
position_ids = self.position_ids[
|
93 |
+
:, past_key_values_length : seq_length + past_key_values_length
|
94 |
+
].clone()
|
95 |
+
|
96 |
+
if input_ids is not None:
|
97 |
+
embeddings = self.word_embeddings(input_ids)
|
98 |
+
if self.position_embedding_type == "absolute":
|
99 |
+
position_embeddings = self.position_embeddings(position_ids)
|
100 |
+
embeddings = embeddings + position_embeddings
|
101 |
+
|
102 |
+
if query_embeds is not None:
|
103 |
+
embeddings = torch.cat((query_embeds, embeddings), dim=1)
|
104 |
+
else:
|
105 |
+
embeddings = query_embeds
|
106 |
+
|
107 |
+
embeddings = self.LayerNorm(embeddings)
|
108 |
+
embeddings = self.dropout(embeddings)
|
109 |
+
return embeddings
|
110 |
+
|
111 |
+
|
112 |
+
class BertSelfAttention(nn.Module):
|
113 |
+
def __init__(self, config, is_cross_attention):
|
114 |
+
super().__init__()
|
115 |
+
self.config = config
|
116 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
117 |
+
config, "embedding_size"
|
118 |
+
):
|
119 |
+
raise ValueError(
|
120 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
121 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
122 |
+
)
|
123 |
+
|
124 |
+
self.num_attention_heads = config.num_attention_heads
|
125 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
126 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
127 |
+
|
128 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
129 |
+
if is_cross_attention:
|
130 |
+
self.key = nn.Linear(config.encoder_width, self.all_head_size)
|
131 |
+
self.value = nn.Linear(config.encoder_width, self.all_head_size)
|
132 |
+
else:
|
133 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
134 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
135 |
+
|
136 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
137 |
+
self.position_embedding_type = getattr(
|
138 |
+
config, "position_embedding_type", "absolute"
|
139 |
+
)
|
140 |
+
if (
|
141 |
+
self.position_embedding_type == "relative_key"
|
142 |
+
or self.position_embedding_type == "relative_key_query"
|
143 |
+
):
|
144 |
+
self.max_position_embeddings = config.max_position_embeddings
|
145 |
+
self.distance_embedding = nn.Embedding(
|
146 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
147 |
+
)
|
148 |
+
self.save_attention = False
|
149 |
+
|
150 |
+
def save_attn_gradients(self, attn_gradients):
|
151 |
+
self.attn_gradients = attn_gradients
|
152 |
+
|
153 |
+
def get_attn_gradients(self):
|
154 |
+
return self.attn_gradients
|
155 |
+
|
156 |
+
def save_attention_map(self, attention_map):
|
157 |
+
self.attention_map = attention_map
|
158 |
+
|
159 |
+
def get_attention_map(self):
|
160 |
+
return self.attention_map
|
161 |
+
|
162 |
+
def transpose_for_scores(self, x):
|
163 |
+
new_x_shape = x.size()[:-1] + (
|
164 |
+
self.num_attention_heads,
|
165 |
+
self.attention_head_size,
|
166 |
+
)
|
167 |
+
x = x.view(*new_x_shape)
|
168 |
+
return x.permute(0, 2, 1, 3)
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
hidden_states,
|
173 |
+
attention_mask=None,
|
174 |
+
head_mask=None,
|
175 |
+
encoder_hidden_states=None,
|
176 |
+
encoder_attention_mask=None,
|
177 |
+
past_key_value=None,
|
178 |
+
output_attentions=False,
|
179 |
+
):
|
180 |
+
|
181 |
+
# If this is instantiated as a cross-attention module, the keys
|
182 |
+
# and values come from an encoder; the attention mask needs to be
|
183 |
+
# such that the encoder's padding tokens are not attended to.
|
184 |
+
is_cross_attention = encoder_hidden_states is not None
|
185 |
+
|
186 |
+
if is_cross_attention:
|
187 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
188 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
189 |
+
attention_mask = encoder_attention_mask
|
190 |
+
elif past_key_value is not None:
|
191 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
192 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
193 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
194 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
195 |
+
else:
|
196 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
197 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
198 |
+
|
199 |
+
mixed_query_layer = self.query(hidden_states)
|
200 |
+
|
201 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
202 |
+
|
203 |
+
past_key_value = (key_layer, value_layer)
|
204 |
+
|
205 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
206 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
207 |
+
|
208 |
+
if (
|
209 |
+
self.position_embedding_type == "relative_key"
|
210 |
+
or self.position_embedding_type == "relative_key_query"
|
211 |
+
):
|
212 |
+
seq_length = hidden_states.size()[1]
|
213 |
+
position_ids_l = torch.arange(
|
214 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
215 |
+
).view(-1, 1)
|
216 |
+
position_ids_r = torch.arange(
|
217 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
218 |
+
).view(1, -1)
|
219 |
+
distance = position_ids_l - position_ids_r
|
220 |
+
positional_embedding = self.distance_embedding(
|
221 |
+
distance + self.max_position_embeddings - 1
|
222 |
+
)
|
223 |
+
positional_embedding = positional_embedding.to(
|
224 |
+
dtype=query_layer.dtype
|
225 |
+
) # fp16 compatibility
|
226 |
+
|
227 |
+
if self.position_embedding_type == "relative_key":
|
228 |
+
relative_position_scores = torch.einsum(
|
229 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
230 |
+
)
|
231 |
+
attention_scores = attention_scores + relative_position_scores
|
232 |
+
elif self.position_embedding_type == "relative_key_query":
|
233 |
+
relative_position_scores_query = torch.einsum(
|
234 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
235 |
+
)
|
236 |
+
relative_position_scores_key = torch.einsum(
|
237 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
238 |
+
)
|
239 |
+
attention_scores = (
|
240 |
+
attention_scores
|
241 |
+
+ relative_position_scores_query
|
242 |
+
+ relative_position_scores_key
|
243 |
+
)
|
244 |
+
|
245 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
246 |
+
if attention_mask is not None:
|
247 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
248 |
+
attention_scores = attention_scores + attention_mask
|
249 |
+
|
250 |
+
# Normalize the attention scores to probabilities.
|
251 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
252 |
+
|
253 |
+
if is_cross_attention and self.save_attention:
|
254 |
+
self.save_attention_map(attention_probs)
|
255 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
256 |
+
|
257 |
+
# This is actually dropping out entire tokens to attend to, which might
|
258 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
259 |
+
attention_probs_dropped = self.dropout(attention_probs)
|
260 |
+
|
261 |
+
# Mask heads if we want to
|
262 |
+
if head_mask is not None:
|
263 |
+
attention_probs_dropped = attention_probs_dropped * head_mask
|
264 |
+
|
265 |
+
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
266 |
+
|
267 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
268 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
269 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
270 |
+
|
271 |
+
outputs = (
|
272 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
273 |
+
)
|
274 |
+
|
275 |
+
outputs = outputs + (past_key_value,)
|
276 |
+
return outputs
|
277 |
+
|
278 |
+
|
279 |
+
class BertSelfOutput(nn.Module):
|
280 |
+
def __init__(self, config):
|
281 |
+
super().__init__()
|
282 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
283 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
284 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
285 |
+
|
286 |
+
def forward(self, hidden_states, input_tensor):
|
287 |
+
hidden_states = self.dense(hidden_states)
|
288 |
+
hidden_states = self.dropout(hidden_states)
|
289 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
290 |
+
return hidden_states
|
291 |
+
|
292 |
+
|
293 |
+
class BertAttention(nn.Module):
|
294 |
+
def __init__(self, config, is_cross_attention=False):
|
295 |
+
super().__init__()
|
296 |
+
self.self = BertSelfAttention(config, is_cross_attention)
|
297 |
+
self.output = BertSelfOutput(config)
|
298 |
+
self.pruned_heads = set()
|
299 |
+
|
300 |
+
def prune_heads(self, heads):
|
301 |
+
if len(heads) == 0:
|
302 |
+
return
|
303 |
+
heads, index = find_pruneable_heads_and_indices(
|
304 |
+
heads,
|
305 |
+
self.self.num_attention_heads,
|
306 |
+
self.self.attention_head_size,
|
307 |
+
self.pruned_heads,
|
308 |
+
)
|
309 |
+
|
310 |
+
# Prune linear layers
|
311 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
312 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
313 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
314 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
315 |
+
|
316 |
+
# Update hyper params and store pruned heads
|
317 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
318 |
+
self.self.all_head_size = (
|
319 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
320 |
+
)
|
321 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
322 |
+
|
323 |
+
def forward(
|
324 |
+
self,
|
325 |
+
hidden_states,
|
326 |
+
attention_mask=None,
|
327 |
+
head_mask=None,
|
328 |
+
encoder_hidden_states=None,
|
329 |
+
encoder_attention_mask=None,
|
330 |
+
past_key_value=None,
|
331 |
+
output_attentions=False,
|
332 |
+
):
|
333 |
+
self_outputs = self.self(
|
334 |
+
hidden_states,
|
335 |
+
attention_mask,
|
336 |
+
head_mask,
|
337 |
+
encoder_hidden_states,
|
338 |
+
encoder_attention_mask,
|
339 |
+
past_key_value,
|
340 |
+
output_attentions,
|
341 |
+
)
|
342 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
343 |
+
|
344 |
+
outputs = (attention_output,) + self_outputs[
|
345 |
+
1:
|
346 |
+
] # add attentions if we output them
|
347 |
+
return outputs
|
348 |
+
|
349 |
+
|
350 |
+
class BertIntermediate(nn.Module):
|
351 |
+
def __init__(self, config):
|
352 |
+
super().__init__()
|
353 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
354 |
+
if isinstance(config.hidden_act, str):
|
355 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
356 |
+
else:
|
357 |
+
self.intermediate_act_fn = config.hidden_act
|
358 |
+
|
359 |
+
def forward(self, hidden_states):
|
360 |
+
hidden_states = self.dense(hidden_states)
|
361 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
362 |
+
return hidden_states
|
363 |
+
|
364 |
+
|
365 |
+
class BertOutput(nn.Module):
|
366 |
+
def __init__(self, config):
|
367 |
+
super().__init__()
|
368 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
369 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
370 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
371 |
+
|
372 |
+
def forward(self, hidden_states, input_tensor):
|
373 |
+
hidden_states = self.dense(hidden_states)
|
374 |
+
hidden_states = self.dropout(hidden_states)
|
375 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
376 |
+
return hidden_states
|
377 |
+
|
378 |
+
|
379 |
+
class BertLayer(nn.Module):
|
380 |
+
def __init__(self, config, layer_num):
|
381 |
+
super().__init__()
|
382 |
+
self.config = config
|
383 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
384 |
+
self.seq_len_dim = 1
|
385 |
+
self.attention = BertAttention(config)
|
386 |
+
self.layer_num = layer_num
|
387 |
+
if (
|
388 |
+
self.config.add_cross_attention
|
389 |
+
and layer_num % self.config.cross_attention_freq == 0
|
390 |
+
):
|
391 |
+
self.crossattention = BertAttention(
|
392 |
+
config, is_cross_attention=self.config.add_cross_attention
|
393 |
+
)
|
394 |
+
self.has_cross_attention = True
|
395 |
+
else:
|
396 |
+
self.has_cross_attention = False
|
397 |
+
self.intermediate = BertIntermediate(config)
|
398 |
+
self.output = BertOutput(config)
|
399 |
+
|
400 |
+
self.intermediate_query = BertIntermediate(config)
|
401 |
+
self.output_query = BertOutput(config)
|
402 |
+
|
403 |
+
def forward(
|
404 |
+
self,
|
405 |
+
hidden_states,
|
406 |
+
attention_mask=None,
|
407 |
+
head_mask=None,
|
408 |
+
encoder_hidden_states=None,
|
409 |
+
encoder_attention_mask=None,
|
410 |
+
past_key_value=None,
|
411 |
+
output_attentions=False,
|
412 |
+
query_length=0,
|
413 |
+
):
|
414 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
415 |
+
self_attn_past_key_value = (
|
416 |
+
past_key_value[:2] if past_key_value is not None else None
|
417 |
+
)
|
418 |
+
self_attention_outputs = self.attention(
|
419 |
+
hidden_states,
|
420 |
+
attention_mask,
|
421 |
+
head_mask,
|
422 |
+
output_attentions=output_attentions,
|
423 |
+
past_key_value=self_attn_past_key_value,
|
424 |
+
)
|
425 |
+
attention_output = self_attention_outputs[0]
|
426 |
+
outputs = self_attention_outputs[1:-1]
|
427 |
+
|
428 |
+
present_key_value = self_attention_outputs[-1]
|
429 |
+
|
430 |
+
if query_length > 0:
|
431 |
+
query_attention_output = attention_output[:, :query_length, :]
|
432 |
+
|
433 |
+
if self.has_cross_attention:
|
434 |
+
assert (
|
435 |
+
encoder_hidden_states is not None
|
436 |
+
), "encoder_hidden_states must be given for cross-attention layers"
|
437 |
+
cross_attention_outputs = self.crossattention(
|
438 |
+
query_attention_output,
|
439 |
+
attention_mask,
|
440 |
+
head_mask,
|
441 |
+
encoder_hidden_states,
|
442 |
+
encoder_attention_mask,
|
443 |
+
output_attentions=output_attentions,
|
444 |
+
)
|
445 |
+
query_attention_output = cross_attention_outputs[0]
|
446 |
+
outputs = (
|
447 |
+
outputs + cross_attention_outputs[1:-1]
|
448 |
+
) # add cross attentions if we output attention weights
|
449 |
+
|
450 |
+
layer_output = apply_chunking_to_forward(
|
451 |
+
self.feed_forward_chunk_query,
|
452 |
+
self.chunk_size_feed_forward,
|
453 |
+
self.seq_len_dim,
|
454 |
+
query_attention_output,
|
455 |
+
)
|
456 |
+
if attention_output.shape[1] > query_length:
|
457 |
+
layer_output_text = apply_chunking_to_forward(
|
458 |
+
self.feed_forward_chunk,
|
459 |
+
self.chunk_size_feed_forward,
|
460 |
+
self.seq_len_dim,
|
461 |
+
attention_output[:, query_length:, :],
|
462 |
+
)
|
463 |
+
layer_output = torch.cat([layer_output, layer_output_text], dim=1)
|
464 |
+
else:
|
465 |
+
layer_output = apply_chunking_to_forward(
|
466 |
+
self.feed_forward_chunk,
|
467 |
+
self.chunk_size_feed_forward,
|
468 |
+
self.seq_len_dim,
|
469 |
+
attention_output,
|
470 |
+
)
|
471 |
+
outputs = (layer_output,) + outputs
|
472 |
+
|
473 |
+
outputs = outputs + (present_key_value,)
|
474 |
+
|
475 |
+
return outputs
|
476 |
+
|
477 |
+
def feed_forward_chunk(self, attention_output):
|
478 |
+
intermediate_output = self.intermediate(attention_output)
|
479 |
+
layer_output = self.output(intermediate_output, attention_output)
|
480 |
+
return layer_output
|
481 |
+
|
482 |
+
def feed_forward_chunk_query(self, attention_output):
|
483 |
+
intermediate_output = self.intermediate_query(attention_output)
|
484 |
+
layer_output = self.output_query(intermediate_output, attention_output)
|
485 |
+
return layer_output
|
486 |
+
|
487 |
+
|
488 |
+
class BertEncoder(nn.Module):
|
489 |
+
def __init__(self, config):
|
490 |
+
super().__init__()
|
491 |
+
self.config = config
|
492 |
+
self.layer = nn.ModuleList(
|
493 |
+
[BertLayer(config, i) for i in range(config.num_hidden_layers)]
|
494 |
+
)
|
495 |
+
|
496 |
+
def forward(
|
497 |
+
self,
|
498 |
+
hidden_states,
|
499 |
+
attention_mask=None,
|
500 |
+
head_mask=None,
|
501 |
+
encoder_hidden_states=None,
|
502 |
+
encoder_attention_mask=None,
|
503 |
+
past_key_values=None,
|
504 |
+
use_cache=None,
|
505 |
+
output_attentions=False,
|
506 |
+
output_hidden_states=False,
|
507 |
+
return_dict=True,
|
508 |
+
query_length=0,
|
509 |
+
):
|
510 |
+
all_hidden_states = () if output_hidden_states else None
|
511 |
+
all_self_attentions = () if output_attentions else None
|
512 |
+
all_cross_attentions = (
|
513 |
+
() if output_attentions and self.config.add_cross_attention else None
|
514 |
+
)
|
515 |
+
|
516 |
+
next_decoder_cache = () if use_cache else None
|
517 |
+
|
518 |
+
for i in range(self.config.num_hidden_layers):
|
519 |
+
layer_module = self.layer[i]
|
520 |
+
if output_hidden_states:
|
521 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
522 |
+
|
523 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
524 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
525 |
+
|
526 |
+
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
527 |
+
|
528 |
+
if use_cache:
|
529 |
+
logger.warn(
|
530 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
531 |
+
)
|
532 |
+
use_cache = False
|
533 |
+
|
534 |
+
def create_custom_forward(module):
|
535 |
+
def custom_forward(*inputs):
|
536 |
+
return module(
|
537 |
+
*inputs, past_key_value, output_attentions, query_length
|
538 |
+
)
|
539 |
+
|
540 |
+
return custom_forward
|
541 |
+
|
542 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
543 |
+
create_custom_forward(layer_module),
|
544 |
+
hidden_states,
|
545 |
+
attention_mask,
|
546 |
+
layer_head_mask,
|
547 |
+
encoder_hidden_states,
|
548 |
+
encoder_attention_mask,
|
549 |
+
)
|
550 |
+
else:
|
551 |
+
layer_outputs = layer_module(
|
552 |
+
hidden_states,
|
553 |
+
attention_mask,
|
554 |
+
layer_head_mask,
|
555 |
+
encoder_hidden_states,
|
556 |
+
encoder_attention_mask,
|
557 |
+
past_key_value,
|
558 |
+
output_attentions,
|
559 |
+
query_length,
|
560 |
+
)
|
561 |
+
|
562 |
+
hidden_states = layer_outputs[0]
|
563 |
+
if use_cache:
|
564 |
+
next_decoder_cache += (layer_outputs[-1],)
|
565 |
+
if output_attentions:
|
566 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
567 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
568 |
+
|
569 |
+
if output_hidden_states:
|
570 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
571 |
+
|
572 |
+
if not return_dict:
|
573 |
+
return tuple(
|
574 |
+
v
|
575 |
+
for v in [
|
576 |
+
hidden_states,
|
577 |
+
next_decoder_cache,
|
578 |
+
all_hidden_states,
|
579 |
+
all_self_attentions,
|
580 |
+
all_cross_attentions,
|
581 |
+
]
|
582 |
+
if v is not None
|
583 |
+
)
|
584 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
585 |
+
last_hidden_state=hidden_states,
|
586 |
+
past_key_values=next_decoder_cache,
|
587 |
+
hidden_states=all_hidden_states,
|
588 |
+
attentions=all_self_attentions,
|
589 |
+
cross_attentions=all_cross_attentions,
|
590 |
+
)
|
591 |
+
|
592 |
+
|
593 |
+
class BertPooler(nn.Module):
|
594 |
+
def __init__(self, config):
|
595 |
+
super().__init__()
|
596 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
597 |
+
self.activation = nn.Tanh()
|
598 |
+
|
599 |
+
def forward(self, hidden_states):
|
600 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
601 |
+
# to the first token.
|
602 |
+
first_token_tensor = hidden_states[:, 0]
|
603 |
+
pooled_output = self.dense(first_token_tensor)
|
604 |
+
pooled_output = self.activation(pooled_output)
|
605 |
+
return pooled_output
|
606 |
+
|
607 |
+
|
608 |
+
class BertPredictionHeadTransform(nn.Module):
|
609 |
+
def __init__(self, config):
|
610 |
+
super().__init__()
|
611 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
612 |
+
if isinstance(config.hidden_act, str):
|
613 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
614 |
+
else:
|
615 |
+
self.transform_act_fn = config.hidden_act
|
616 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
617 |
+
|
618 |
+
def forward(self, hidden_states):
|
619 |
+
hidden_states = self.dense(hidden_states)
|
620 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
621 |
+
hidden_states = self.LayerNorm(hidden_states)
|
622 |
+
return hidden_states
|
623 |
+
|
624 |
+
|
625 |
+
class BertLMPredictionHead(nn.Module):
|
626 |
+
def __init__(self, config):
|
627 |
+
super().__init__()
|
628 |
+
self.transform = BertPredictionHeadTransform(config)
|
629 |
+
|
630 |
+
# The output weights are the same as the input embeddings, but there is
|
631 |
+
# an output-only bias for each token.
|
632 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
633 |
+
|
634 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
635 |
+
|
636 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
637 |
+
self.decoder.bias = self.bias
|
638 |
+
|
639 |
+
def forward(self, hidden_states):
|
640 |
+
hidden_states = self.transform(hidden_states)
|
641 |
+
hidden_states = self.decoder(hidden_states)
|
642 |
+
return hidden_states
|
643 |
+
|
644 |
+
|
645 |
+
class BertOnlyMLMHead(nn.Module):
|
646 |
+
def __init__(self, config):
|
647 |
+
super().__init__()
|
648 |
+
self.predictions = BertLMPredictionHead(config)
|
649 |
+
|
650 |
+
def forward(self, sequence_output):
|
651 |
+
prediction_scores = self.predictions(sequence_output)
|
652 |
+
return prediction_scores
|
653 |
+
|
654 |
+
|
655 |
+
class BertPreTrainedModel(PreTrainedModel):
|
656 |
+
"""
|
657 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
658 |
+
models.
|
659 |
+
"""
|
660 |
+
|
661 |
+
config_class = BertConfig
|
662 |
+
base_model_prefix = "bert"
|
663 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
664 |
+
|
665 |
+
def _init_weights(self, module):
|
666 |
+
"""Initialize the weights"""
|
667 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
668 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
669 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
670 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
671 |
+
elif isinstance(module, nn.LayerNorm):
|
672 |
+
module.bias.data.zero_()
|
673 |
+
module.weight.data.fill_(1.0)
|
674 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
675 |
+
module.bias.data.zero_()
|
676 |
+
|
677 |
+
|
678 |
+
class BertModel(BertPreTrainedModel):
|
679 |
+
"""
|
680 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
681 |
+
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
|
682 |
+
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
683 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
684 |
+
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
|
685 |
+
input to the forward pass.
|
686 |
+
"""
|
687 |
+
|
688 |
+
def __init__(self, config, add_pooling_layer=False):
|
689 |
+
super().__init__(config)
|
690 |
+
self.config = config
|
691 |
+
|
692 |
+
self.embeddings = BertEmbeddings(config)
|
693 |
+
|
694 |
+
self.encoder = BertEncoder(config)
|
695 |
+
|
696 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
697 |
+
|
698 |
+
self.init_weights()
|
699 |
+
|
700 |
+
def get_input_embeddings(self):
|
701 |
+
return self.embeddings.word_embeddings
|
702 |
+
|
703 |
+
def set_input_embeddings(self, value):
|
704 |
+
self.embeddings.word_embeddings = value
|
705 |
+
|
706 |
+
def _prune_heads(self, heads_to_prune):
|
707 |
+
"""
|
708 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
709 |
+
class PreTrainedModel
|
710 |
+
"""
|
711 |
+
for layer, heads in heads_to_prune.items():
|
712 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
713 |
+
|
714 |
+
def get_extended_attention_mask(
|
715 |
+
self,
|
716 |
+
attention_mask: Tensor,
|
717 |
+
input_shape: Tuple[int],
|
718 |
+
device: device,
|
719 |
+
is_decoder: bool,
|
720 |
+
has_query: bool = False,
|
721 |
+
) -> Tensor:
|
722 |
+
"""
|
723 |
+
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
724 |
+
|
725 |
+
Arguments:
|
726 |
+
attention_mask (:obj:`torch.Tensor`):
|
727 |
+
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
728 |
+
input_shape (:obj:`Tuple[int]`):
|
729 |
+
The shape of the input to the model.
|
730 |
+
device: (:obj:`torch.device`):
|
731 |
+
The device of the input to the model.
|
732 |
+
|
733 |
+
Returns:
|
734 |
+
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
|
735 |
+
"""
|
736 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
737 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
738 |
+
if attention_mask.dim() == 3:
|
739 |
+
extended_attention_mask = attention_mask[:, None, :, :]
|
740 |
+
elif attention_mask.dim() == 2:
|
741 |
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
742 |
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
743 |
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
744 |
+
if is_decoder:
|
745 |
+
batch_size, seq_length = input_shape
|
746 |
+
|
747 |
+
seq_ids = torch.arange(seq_length, device=device)
|
748 |
+
causal_mask = (
|
749 |
+
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
|
750 |
+
<= seq_ids[None, :, None]
|
751 |
+
)
|
752 |
+
|
753 |
+
# add a prefix ones mask to the causal mask
|
754 |
+
# causal and attention masks must have same type with pytorch version < 1.3
|
755 |
+
causal_mask = causal_mask.to(attention_mask.dtype)
|
756 |
+
|
757 |
+
if causal_mask.shape[1] < attention_mask.shape[1]:
|
758 |
+
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
759 |
+
if has_query: # UniLM style attention mask
|
760 |
+
causal_mask = torch.cat(
|
761 |
+
[
|
762 |
+
torch.zeros(
|
763 |
+
(batch_size, prefix_seq_len, seq_length),
|
764 |
+
device=device,
|
765 |
+
dtype=causal_mask.dtype,
|
766 |
+
),
|
767 |
+
causal_mask,
|
768 |
+
],
|
769 |
+
axis=1,
|
770 |
+
)
|
771 |
+
causal_mask = torch.cat(
|
772 |
+
[
|
773 |
+
torch.ones(
|
774 |
+
(batch_size, causal_mask.shape[1], prefix_seq_len),
|
775 |
+
device=device,
|
776 |
+
dtype=causal_mask.dtype,
|
777 |
+
),
|
778 |
+
causal_mask,
|
779 |
+
],
|
780 |
+
axis=-1,
|
781 |
+
)
|
782 |
+
extended_attention_mask = (
|
783 |
+
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
784 |
+
)
|
785 |
+
else:
|
786 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
787 |
+
else:
|
788 |
+
raise ValueError(
|
789 |
+
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
790 |
+
input_shape, attention_mask.shape
|
791 |
+
)
|
792 |
+
)
|
793 |
+
|
794 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
795 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
796 |
+
# positions we want to attend and -10000.0 for masked positions.
|
797 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
798 |
+
# effectively the same as removing these entirely.
|
799 |
+
extended_attention_mask = extended_attention_mask.to(
|
800 |
+
dtype=self.dtype
|
801 |
+
) # fp16 compatibility
|
802 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
803 |
+
return extended_attention_mask
|
804 |
+
|
805 |
+
def forward(
|
806 |
+
self,
|
807 |
+
input_ids=None,
|
808 |
+
attention_mask=None,
|
809 |
+
position_ids=None,
|
810 |
+
head_mask=None,
|
811 |
+
query_embeds=None,
|
812 |
+
encoder_hidden_states=None,
|
813 |
+
encoder_attention_mask=None,
|
814 |
+
past_key_values=None,
|
815 |
+
use_cache=None,
|
816 |
+
output_attentions=None,
|
817 |
+
output_hidden_states=None,
|
818 |
+
return_dict=None,
|
819 |
+
is_decoder=False,
|
820 |
+
):
|
821 |
+
r"""
|
822 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
823 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
824 |
+
the model is configured as a decoder.
|
825 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
826 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
827 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
828 |
+
- 1 for tokens that are **not masked**,
|
829 |
+
- 0 for tokens that are **masked**.
|
830 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
831 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
832 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
833 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
834 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
835 |
+
use_cache (:obj:`bool`, `optional`):
|
836 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
837 |
+
decoding (see :obj:`past_key_values`).
|
838 |
+
"""
|
839 |
+
output_attentions = (
|
840 |
+
output_attentions
|
841 |
+
if output_attentions is not None
|
842 |
+
else self.config.output_attentions
|
843 |
+
)
|
844 |
+
output_hidden_states = (
|
845 |
+
output_hidden_states
|
846 |
+
if output_hidden_states is not None
|
847 |
+
else self.config.output_hidden_states
|
848 |
+
)
|
849 |
+
return_dict = (
|
850 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
851 |
+
)
|
852 |
+
|
853 |
+
# use_cache = use_cache if use_cache is not None else self.config.use_cache
|
854 |
+
|
855 |
+
if input_ids is None:
|
856 |
+
assert (
|
857 |
+
query_embeds is not None
|
858 |
+
), "You have to specify query_embeds when input_ids is None"
|
859 |
+
|
860 |
+
# past_key_values_length
|
861 |
+
past_key_values_length = (
|
862 |
+
past_key_values[0][0].shape[2] - self.config.query_length
|
863 |
+
if past_key_values is not None
|
864 |
+
else 0
|
865 |
+
)
|
866 |
+
|
867 |
+
query_length = query_embeds.shape[1] if query_embeds is not None else 0
|
868 |
+
|
869 |
+
embedding_output = self.embeddings(
|
870 |
+
input_ids=input_ids,
|
871 |
+
position_ids=position_ids,
|
872 |
+
query_embeds=query_embeds,
|
873 |
+
past_key_values_length=past_key_values_length,
|
874 |
+
)
|
875 |
+
|
876 |
+
input_shape = embedding_output.size()[:-1]
|
877 |
+
batch_size, seq_length = input_shape
|
878 |
+
device = embedding_output.device
|
879 |
+
|
880 |
+
if attention_mask is None:
|
881 |
+
attention_mask = torch.ones(
|
882 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
883 |
+
)
|
884 |
+
|
885 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
886 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
887 |
+
if is_decoder:
|
888 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
889 |
+
attention_mask,
|
890 |
+
input_ids.shape,
|
891 |
+
device,
|
892 |
+
is_decoder,
|
893 |
+
has_query=(query_embeds is not None),
|
894 |
+
)
|
895 |
+
else:
|
896 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
897 |
+
attention_mask, input_shape, device, is_decoder
|
898 |
+
)
|
899 |
+
|
900 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
901 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
902 |
+
if encoder_hidden_states is not None:
|
903 |
+
if type(encoder_hidden_states) == list:
|
904 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[
|
905 |
+
0
|
906 |
+
].size()
|
907 |
+
else:
|
908 |
+
(
|
909 |
+
encoder_batch_size,
|
910 |
+
encoder_sequence_length,
|
911 |
+
_,
|
912 |
+
) = encoder_hidden_states.size()
|
913 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
914 |
+
|
915 |
+
if type(encoder_attention_mask) == list:
|
916 |
+
encoder_extended_attention_mask = [
|
917 |
+
self.invert_attention_mask(mask) for mask in encoder_attention_mask
|
918 |
+
]
|
919 |
+
elif encoder_attention_mask is None:
|
920 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
921 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
922 |
+
encoder_attention_mask
|
923 |
+
)
|
924 |
+
else:
|
925 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
926 |
+
encoder_attention_mask
|
927 |
+
)
|
928 |
+
else:
|
929 |
+
encoder_extended_attention_mask = None
|
930 |
+
|
931 |
+
# Prepare head mask if needed
|
932 |
+
# 1.0 in head_mask indicate we keep the head
|
933 |
+
# attention_probs has shape bsz x n_heads x N x N
|
934 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
935 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
936 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
937 |
+
|
938 |
+
encoder_outputs = self.encoder(
|
939 |
+
embedding_output,
|
940 |
+
attention_mask=extended_attention_mask,
|
941 |
+
head_mask=head_mask,
|
942 |
+
encoder_hidden_states=encoder_hidden_states,
|
943 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
944 |
+
past_key_values=past_key_values,
|
945 |
+
use_cache=use_cache,
|
946 |
+
output_attentions=output_attentions,
|
947 |
+
output_hidden_states=output_hidden_states,
|
948 |
+
return_dict=return_dict,
|
949 |
+
query_length=query_length,
|
950 |
+
)
|
951 |
+
sequence_output = encoder_outputs[0]
|
952 |
+
pooled_output = (
|
953 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
954 |
+
)
|
955 |
+
|
956 |
+
if not return_dict:
|
957 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
958 |
+
|
959 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
960 |
+
last_hidden_state=sequence_output,
|
961 |
+
pooler_output=pooled_output,
|
962 |
+
past_key_values=encoder_outputs.past_key_values,
|
963 |
+
hidden_states=encoder_outputs.hidden_states,
|
964 |
+
attentions=encoder_outputs.attentions,
|
965 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
966 |
+
)
|
967 |
+
|
968 |
+
|
969 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
970 |
+
|
971 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
972 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
973 |
+
|
974 |
+
def __init__(self, config):
|
975 |
+
super().__init__(config)
|
976 |
+
|
977 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
978 |
+
self.cls = BertOnlyMLMHead(config)
|
979 |
+
|
980 |
+
self.init_weights()
|
981 |
+
|
982 |
+
def get_output_embeddings(self):
|
983 |
+
return self.cls.predictions.decoder
|
984 |
+
|
985 |
+
def set_output_embeddings(self, new_embeddings):
|
986 |
+
self.cls.predictions.decoder = new_embeddings
|
987 |
+
|
988 |
+
def forward(
|
989 |
+
self,
|
990 |
+
input_ids=None,
|
991 |
+
attention_mask=None,
|
992 |
+
position_ids=None,
|
993 |
+
head_mask=None,
|
994 |
+
query_embeds=None,
|
995 |
+
encoder_hidden_states=None,
|
996 |
+
encoder_attention_mask=None,
|
997 |
+
labels=None,
|
998 |
+
past_key_values=None,
|
999 |
+
use_cache=True,
|
1000 |
+
output_attentions=None,
|
1001 |
+
output_hidden_states=None,
|
1002 |
+
return_dict=None,
|
1003 |
+
return_logits=False,
|
1004 |
+
is_decoder=True,
|
1005 |
+
reduction="mean",
|
1006 |
+
):
|
1007 |
+
r"""
|
1008 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
1009 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1010 |
+
the model is configured as a decoder.
|
1011 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1012 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1013 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
1014 |
+
- 1 for tokens that are **not masked**,
|
1015 |
+
- 0 for tokens that are **masked**.
|
1016 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1017 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1018 |
+
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
|
1019 |
+
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
|
1020 |
+
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1021 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1022 |
+
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
1023 |
+
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
1024 |
+
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
1025 |
+
use_cache (:obj:`bool`, `optional`):
|
1026 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
1027 |
+
decoding (see :obj:`past_key_values`).
|
1028 |
+
Returns:
|
1029 |
+
Example::
|
1030 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
1031 |
+
>>> import torch
|
1032 |
+
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
|
1033 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
1034 |
+
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
|
1035 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1036 |
+
>>> outputs = model(**inputs)
|
1037 |
+
>>> prediction_logits = outputs.logits
|
1038 |
+
"""
|
1039 |
+
return_dict = (
|
1040 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1041 |
+
)
|
1042 |
+
if labels is not None:
|
1043 |
+
use_cache = False
|
1044 |
+
if past_key_values is not None:
|
1045 |
+
query_embeds = None
|
1046 |
+
|
1047 |
+
outputs = self.bert(
|
1048 |
+
input_ids,
|
1049 |
+
attention_mask=attention_mask,
|
1050 |
+
position_ids=position_ids,
|
1051 |
+
head_mask=head_mask,
|
1052 |
+
query_embeds=query_embeds,
|
1053 |
+
encoder_hidden_states=encoder_hidden_states,
|
1054 |
+
encoder_attention_mask=encoder_attention_mask,
|
1055 |
+
past_key_values=past_key_values,
|
1056 |
+
use_cache=use_cache,
|
1057 |
+
output_attentions=output_attentions,
|
1058 |
+
output_hidden_states=output_hidden_states,
|
1059 |
+
return_dict=return_dict,
|
1060 |
+
is_decoder=is_decoder,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
sequence_output = outputs[0]
|
1064 |
+
if query_embeds is not None:
|
1065 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1066 |
+
|
1067 |
+
prediction_scores = self.cls(sequence_output)
|
1068 |
+
|
1069 |
+
if return_logits:
|
1070 |
+
return prediction_scores[:, :-1, :].contiguous()
|
1071 |
+
|
1072 |
+
lm_loss = None
|
1073 |
+
if labels is not None:
|
1074 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1075 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1076 |
+
labels = labels[:, 1:].contiguous()
|
1077 |
+
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
1078 |
+
lm_loss = loss_fct(
|
1079 |
+
shifted_prediction_scores.view(-1, self.config.vocab_size),
|
1080 |
+
labels.view(-1),
|
1081 |
+
)
|
1082 |
+
if reduction == "none":
|
1083 |
+
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
1084 |
+
|
1085 |
+
if not return_dict:
|
1086 |
+
output = (prediction_scores,) + outputs[2:]
|
1087 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1088 |
+
|
1089 |
+
return CausalLMOutputWithCrossAttentions(
|
1090 |
+
loss=lm_loss,
|
1091 |
+
logits=prediction_scores,
|
1092 |
+
past_key_values=outputs.past_key_values,
|
1093 |
+
hidden_states=outputs.hidden_states,
|
1094 |
+
attentions=outputs.attentions,
|
1095 |
+
cross_attentions=outputs.cross_attentions,
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
def prepare_inputs_for_generation(
|
1099 |
+
self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs
|
1100 |
+
):
|
1101 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1102 |
+
if attention_mask is None:
|
1103 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
1104 |
+
query_mask = input_ids.new_ones(query_embeds.shape[:-1])
|
1105 |
+
attention_mask = torch.cat([query_mask, attention_mask], dim=-1)
|
1106 |
+
|
1107 |
+
# cut decoder_input_ids if past is used
|
1108 |
+
if past is not None:
|
1109 |
+
input_ids = input_ids[:, -1:]
|
1110 |
+
|
1111 |
+
return {
|
1112 |
+
"input_ids": input_ids,
|
1113 |
+
"query_embeds": query_embeds,
|
1114 |
+
"attention_mask": attention_mask,
|
1115 |
+
"past_key_values": past,
|
1116 |
+
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
1117 |
+
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
1118 |
+
"is_decoder": True,
|
1119 |
+
}
|
1120 |
+
|
1121 |
+
def _reorder_cache(self, past, beam_idx):
|
1122 |
+
reordered_past = ()
|
1123 |
+
for layer_past in past:
|
1124 |
+
reordered_past += (
|
1125 |
+
tuple(
|
1126 |
+
past_state.index_select(0, beam_idx) for past_state in layer_past
|
1127 |
+
),
|
1128 |
+
)
|
1129 |
+
return reordered_past
|
1130 |
+
|
1131 |
+
|
1132 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
1133 |
+
|
1134 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1135 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1136 |
+
|
1137 |
+
def __init__(self, config):
|
1138 |
+
super().__init__(config)
|
1139 |
+
|
1140 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1141 |
+
self.cls = BertOnlyMLMHead(config)
|
1142 |
+
|
1143 |
+
self.init_weights()
|
1144 |
+
|
1145 |
+
def get_output_embeddings(self):
|
1146 |
+
return self.cls.predictions.decoder
|
1147 |
+
|
1148 |
+
def set_output_embeddings(self, new_embeddings):
|
1149 |
+
self.cls.predictions.decoder = new_embeddings
|
1150 |
+
|
1151 |
+
def forward(
|
1152 |
+
self,
|
1153 |
+
input_ids=None,
|
1154 |
+
attention_mask=None,
|
1155 |
+
position_ids=None,
|
1156 |
+
head_mask=None,
|
1157 |
+
query_embeds=None,
|
1158 |
+
encoder_hidden_states=None,
|
1159 |
+
encoder_attention_mask=None,
|
1160 |
+
labels=None,
|
1161 |
+
output_attentions=None,
|
1162 |
+
output_hidden_states=None,
|
1163 |
+
return_dict=None,
|
1164 |
+
return_logits=False,
|
1165 |
+
is_decoder=False,
|
1166 |
+
):
|
1167 |
+
r"""
|
1168 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1169 |
+
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
|
1170 |
+
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
|
1171 |
+
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
|
1172 |
+
"""
|
1173 |
+
|
1174 |
+
return_dict = (
|
1175 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
outputs = self.bert(
|
1179 |
+
input_ids,
|
1180 |
+
attention_mask=attention_mask,
|
1181 |
+
position_ids=position_ids,
|
1182 |
+
head_mask=head_mask,
|
1183 |
+
query_embeds=query_embeds,
|
1184 |
+
encoder_hidden_states=encoder_hidden_states,
|
1185 |
+
encoder_attention_mask=encoder_attention_mask,
|
1186 |
+
output_attentions=output_attentions,
|
1187 |
+
output_hidden_states=output_hidden_states,
|
1188 |
+
return_dict=return_dict,
|
1189 |
+
is_decoder=is_decoder,
|
1190 |
+
)
|
1191 |
+
|
1192 |
+
if query_embeds is not None:
|
1193 |
+
sequence_output = outputs[0][:, query_embeds.shape[1] :, :]
|
1194 |
+
prediction_scores = self.cls(sequence_output)
|
1195 |
+
|
1196 |
+
if return_logits:
|
1197 |
+
return prediction_scores
|
1198 |
+
|
1199 |
+
masked_lm_loss = None
|
1200 |
+
if labels is not None:
|
1201 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1202 |
+
masked_lm_loss = loss_fct(
|
1203 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
if not return_dict:
|
1207 |
+
output = (prediction_scores,) + outputs[2:]
|
1208 |
+
return (
|
1209 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
return MaskedLMOutput(
|
1213 |
+
loss=masked_lm_loss,
|
1214 |
+
logits=prediction_scores,
|
1215 |
+
hidden_states=outputs.hidden_states,
|
1216 |
+
attentions=outputs.attentions,
|
1217 |
+
)
|
video_llama/models/__init__.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from salesforce@LAVIS Vision-CAIR@MiniGPT-4. Below is the original copyright:
|
3 |
+
Copyright (c) 2022, salesforce.com, inc.
|
4 |
+
All rights reserved.
|
5 |
+
SPDX-License-Identifier: BSD-3-Clause
|
6 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
7 |
+
"""
|
8 |
+
|
9 |
+
import logging
|
10 |
+
import torch
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
|
13 |
+
from video_llama.common.registry import registry
|
14 |
+
from video_llama.models.base_model import BaseModel
|
15 |
+
from video_llama.models.blip2 import Blip2Base
|
16 |
+
from video_llama.models.video_llama import VideoLLAMA
|
17 |
+
from video_llama.processors.base_processor import BaseProcessor
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
"load_model",
|
22 |
+
"BaseModel",
|
23 |
+
"Blip2Base",
|
24 |
+
"VideoLLAMA"
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None):
|
29 |
+
"""
|
30 |
+
Load supported models.
|
31 |
+
|
32 |
+
To list all available models and types in registry:
|
33 |
+
>>> from video_llama.models import model_zoo
|
34 |
+
>>> print(model_zoo)
|
35 |
+
|
36 |
+
Args:
|
37 |
+
name (str): name of the model.
|
38 |
+
model_type (str): type of the model.
|
39 |
+
is_eval (bool): whether the model is in eval mode. Default: False.
|
40 |
+
device (str): device to use. Default: "cpu".
|
41 |
+
checkpoint (str): path or to checkpoint. Default: None.
|
42 |
+
Note that expecting the checkpoint to have the same keys in state_dict as the model.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
model (torch.nn.Module): model.
|
46 |
+
"""
|
47 |
+
|
48 |
+
model = registry.get_model_class(name).from_pretrained(model_type=model_type)
|
49 |
+
|
50 |
+
if checkpoint is not None:
|
51 |
+
model.load_checkpoint(checkpoint)
|
52 |
+
|
53 |
+
if is_eval:
|
54 |
+
model.eval()
|
55 |
+
|
56 |
+
if device == "cpu":
|
57 |
+
model = model.float()
|
58 |
+
|
59 |
+
return model.to(device)
|
60 |
+
|
61 |
+
|
62 |
+
def load_preprocess(config):
|
63 |
+
"""
|
64 |
+
Load preprocessor configs and construct preprocessors.
|
65 |
+
|
66 |
+
If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
config (dict): preprocessor configs.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
vis_processors (dict): preprocessors for visual inputs.
|
73 |
+
txt_processors (dict): preprocessors for text inputs.
|
74 |
+
|
75 |
+
Key is "train" or "eval" for processors used in training and evaluation respectively.
|
76 |
+
"""
|
77 |
+
|
78 |
+
def _build_proc_from_cfg(cfg):
|
79 |
+
return (
|
80 |
+
registry.get_processor_class(cfg.name).from_config(cfg)
|
81 |
+
if cfg is not None
|
82 |
+
else BaseProcessor()
|
83 |
+
)
|
84 |
+
|
85 |
+
vis_processors = dict()
|
86 |
+
txt_processors = dict()
|
87 |
+
|
88 |
+
vis_proc_cfg = config.get("vis_processor")
|
89 |
+
txt_proc_cfg = config.get("text_processor")
|
90 |
+
|
91 |
+
if vis_proc_cfg is not None:
|
92 |
+
vis_train_cfg = vis_proc_cfg.get("train")
|
93 |
+
vis_eval_cfg = vis_proc_cfg.get("eval")
|
94 |
+
else:
|
95 |
+
vis_train_cfg = None
|
96 |
+
vis_eval_cfg = None
|
97 |
+
|
98 |
+
vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg)
|
99 |
+
vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg)
|
100 |
+
|
101 |
+
if txt_proc_cfg is not None:
|
102 |
+
txt_train_cfg = txt_proc_cfg.get("train")
|
103 |
+
txt_eval_cfg = txt_proc_cfg.get("eval")
|
104 |
+
else:
|
105 |
+
txt_train_cfg = None
|
106 |
+
txt_eval_cfg = None
|
107 |
+
|
108 |
+
txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg)
|
109 |
+
txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg)
|
110 |
+
|
111 |
+
return vis_processors, txt_processors
|
112 |
+
|
113 |
+
|
114 |
+
def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"):
|
115 |
+
"""
|
116 |
+
Load model and its related preprocessors.
|
117 |
+
|
118 |
+
List all available models and types in registry:
|
119 |
+
>>> from video_llama.models import model_zoo
|
120 |
+
>>> print(model_zoo)
|
121 |
+
|
122 |
+
Args:
|
123 |
+
name (str): name of the model.
|
124 |
+
model_type (str): type of the model.
|
125 |
+
is_eval (bool): whether the model is in eval mode. Default: False.
|
126 |
+
device (str): device to use. Default: "cpu".
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
model (torch.nn.Module): model.
|
130 |
+
vis_processors (dict): preprocessors for visual inputs.
|
131 |
+
txt_processors (dict): preprocessors for text inputs.
|
132 |
+
"""
|
133 |
+
model_cls = registry.get_model_class(name)
|
134 |
+
|
135 |
+
# load model
|
136 |
+
model = model_cls.from_pretrained(model_type=model_type)
|
137 |
+
|
138 |
+
if is_eval:
|
139 |
+
model.eval()
|
140 |
+
|
141 |
+
# load preprocess
|
142 |
+
cfg = OmegaConf.load(model_cls.default_config_path(model_type))
|
143 |
+
if cfg is not None:
|
144 |
+
preprocess_cfg = cfg.preprocess
|
145 |
+
|
146 |
+
vis_processors, txt_processors = load_preprocess(preprocess_cfg)
|
147 |
+
else:
|
148 |
+
vis_processors, txt_processors = None, None
|
149 |
+
logging.info(
|
150 |
+
f"""No default preprocess for model {name} ({model_type}).
|
151 |
+
This can happen if the model is not finetuned on downstream datasets,
|
152 |
+
or it is not intended for direct use without finetuning.
|
153 |
+
"""
|
154 |
+
)
|
155 |
+
|
156 |
+
if device == "cpu" or device == torch.device("cpu"):
|
157 |
+
model = model.float()
|
158 |
+
|
159 |
+
return model.to(device), vis_processors, txt_processors
|
160 |
+
|
161 |
+
|
162 |
+
class ModelZoo:
|
163 |
+
"""
|
164 |
+
A utility class to create string representation of available model architectures and types.
|
165 |
+
|
166 |
+
>>> from video_llama.models import model_zoo
|
167 |
+
>>> # list all available models
|
168 |
+
>>> print(model_zoo)
|
169 |
+
>>> # show total number of models
|
170 |
+
>>> print(len(model_zoo))
|
171 |
+
"""
|
172 |
+
|
173 |
+
def __init__(self) -> None:
|
174 |
+
self.model_zoo = {
|
175 |
+
k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys())
|
176 |
+
for k, v in registry.mapping["model_name_mapping"].items()
|
177 |
+
}
|
178 |
+
|
179 |
+
def __str__(self) -> str:
|
180 |
+
return (
|
181 |
+
"=" * 50
|
182 |
+
+ "\n"
|
183 |
+
+ f"{'Architectures':<30} {'Types'}\n"
|
184 |
+
+ "=" * 50
|
185 |
+
+ "\n"
|
186 |
+
+ "\n".join(
|
187 |
+
[
|
188 |
+
f"{name:<30} {', '.join(types)}"
|
189 |
+
for name, types in self.model_zoo.items()
|
190 |
+
]
|
191 |
+
)
|
192 |
+
)
|
193 |
+
|
194 |
+
def __iter__(self):
|
195 |
+
return iter(self.model_zoo.items())
|
196 |
+
|
197 |
+
def __len__(self):
|
198 |
+
return sum([len(v) for v in self.model_zoo.values()])
|
199 |
+
|
200 |
+
|
201 |
+
model_zoo = ModelZoo()
|