Spaces:
Runtime error
Runtime error
Upload indexer.py
Browse files- indexer.py +64 -0
indexer.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
# from grammar import remove_verbs, clean_text
|
5 |
+
from utils import *
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
|
8 |
+
|
9 |
+
class FAISS:
|
10 |
+
def __init__(self, dimensions: int):
|
11 |
+
self.dimensions = dimensions
|
12 |
+
self.index = faiss.IndexFlatL2(dimensions)
|
13 |
+
self.vectors = {}
|
14 |
+
self.counter = 0
|
15 |
+
self.model_name = 'paraphrase-multilingual-MiniLM-L12-v2'
|
16 |
+
self.sentence_encoder = SentenceTransformer(self.model_name)
|
17 |
+
|
18 |
+
def init_vectors(self, path):
|
19 |
+
with open(path, 'rb') as pkl_file:
|
20 |
+
self.vectors = pickle.load(pkl_file)
|
21 |
+
|
22 |
+
def init_index(self, path):
|
23 |
+
self.index = faiss.read_index(path)
|
24 |
+
|
25 |
+
def add(self, text, idx, pop, emb=None):
|
26 |
+
if emb is None:
|
27 |
+
text_vec = self.sentence_encoder.encode([text])
|
28 |
+
else:
|
29 |
+
text_vec = emb
|
30 |
+
self.index.add(text_vec)
|
31 |
+
self.vectors[self.counter] = (idx, text, pop, text_vec)
|
32 |
+
self.counter += 1
|
33 |
+
|
34 |
+
def search(self, v: list, k: int = 10):
|
35 |
+
result = []
|
36 |
+
distance, item_index = self.index.search(v, k)
|
37 |
+
for dist, i in zip(distance[0], item_index[0]):
|
38 |
+
if i == -1:
|
39 |
+
break
|
40 |
+
else:
|
41 |
+
result.append((self.vectors[i][0], self.vectors[i][1], self.vectors[i][2], dist))
|
42 |
+
|
43 |
+
return result
|
44 |
+
|
45 |
+
def suggest_tags(self, query, top_n=10, k=30) -> list:
|
46 |
+
|
47 |
+
emb = self.sentence_encoder.encode([query.lower()])
|
48 |
+
r = self.search(emb, k)
|
49 |
+
|
50 |
+
result = []
|
51 |
+
for i in r:
|
52 |
+
if check(query, i[1]):
|
53 |
+
result.append(i)
|
54 |
+
# надо добавить вес относительно длины
|
55 |
+
result = sorted(result, key=lambda x: x[0] * 0.3 - x[-1], reverse=True)
|
56 |
+
total_result = []
|
57 |
+
for i in range(len(result)):
|
58 |
+
flag = True
|
59 |
+
for j in result[i + 1:]:
|
60 |
+
flag &= sweet_check(result[i][1], j[1])
|
61 |
+
if flag:
|
62 |
+
total_result.append(result[i][1])
|
63 |
+
|
64 |
+
return total_result[:top_n]
|