|
import streamlit as st
|
|
from transformers import pipeline
|
|
from PIL import Image
|
|
|
|
MODEL_1 = "google/vit-base-patch16-224"
|
|
MIN_ACEPTABLE_SCORE = 0.1
|
|
MAX_N_LABELS = 5
|
|
MODEL_2 = "nateraw/vit-age-classifier"
|
|
MODELS = [
|
|
"google/vit-base-patch16-224",
|
|
"nateraw/vit-age-classifier",
|
|
"microsoft/resnet-50",
|
|
"Falconsai/nsfw_image_detection",
|
|
"cafeai/cafe_aesthetic",
|
|
"microsoft/resnet-18",
|
|
"microsoft/resnet-34",
|
|
"microsoft/resnet-101",
|
|
"microsoft/resnet-152",
|
|
"microsoft/swin-tiny-patch4-window7-224",
|
|
"-- Reinstated on testing--",
|
|
"microsoft/beit-base-patch16-224-pt22k-ft22k",
|
|
"-- New --",
|
|
"-- Still in the testing process --",
|
|
"facebook/convnext-large-224",
|
|
"timm/resnet50.a1_in1k",
|
|
"timm/mobilenetv3_large_100.ra_in1k",
|
|
"trpakov/vit-face-expression",
|
|
"rizvandwiki/gender-classification",
|
|
"#q-future/one-align",
|
|
"LukeJacob2023/nsfw-image-detector",
|
|
"vit-base-patch16-224-in21k",
|
|
"not-lain/deepfake",
|
|
"carbon225/vit-base-patch16-224-hentai",
|
|
"facebook/convnext-base-224-22k-1k",
|
|
"facebook/convnext-large-224",
|
|
"facebook/convnext-tiny-224",
|
|
"nvidia/mit-b0",
|
|
"microsoft/resnet-18",
|
|
"microsoft/swinv2-base-patch4-window16-256",
|
|
"andupets/real-estate-image-classification",
|
|
"timm/tf_efficientnetv2_s.in21k",
|
|
"timm/convnext_tiny.fb_in22k",
|
|
"DunnBC22/vit-base-patch16-224-in21k_Human_Activity_Recognition",
|
|
"FatihC/swin-tiny-patch4-window7-224-finetuned-eurosat-watermark",
|
|
"aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier",
|
|
"RickyIG/emotion_face_image_classification",
|
|
"shadowlilac/aesthetic-shadow"
|
|
]
|
|
|
|
def classify(image, model):
|
|
classifier = pipeline("image-classification", model=model)
|
|
result= classifier(image)
|
|
return result
|
|
|
|
def save_result(result):
|
|
st.write("In the future, this function will save the result in a database.")
|
|
|
|
def print_result(result):
|
|
|
|
comulative_discarded_score = 0
|
|
for i in range(len(result)):
|
|
if result[i]['score'] < MIN_ACEPTABLE_SCORE:
|
|
comulative_discarded_score += result[i]['score']
|
|
else:
|
|
st.write(result[i]['label'])
|
|
st.progress(result[i]['score'])
|
|
st.write(result[i]['score'])
|
|
|
|
st.write(f"comulative_discarded_score:")
|
|
st.progress(comulative_discarded_score)
|
|
st.write(comulative_discarded_score)
|
|
|
|
|
|
|
|
def main():
|
|
st.title("Image Classification")
|
|
st.write("This is a simple web app to test and compare different image classifier models using Hugging Face's image-classification pipeline.")
|
|
st.write("From time to time more models will be added to the list. If you want to add a model, please open an issue on the GitHub repository.")
|
|
st.write("If you like this project, please consider liking it or buying me a coffee. It will help me to keep working on this and other projects. Thank you!")
|
|
|
|
|
|
bmc_link = "https://www.buymeacoffee.com/nuno.tome"
|
|
|
|
image_url = "https://i.giphy.com/RETzc1mj7HpZPuNf3e.webp"
|
|
|
|
image_size = "150px"
|
|
|
|
image_link_markdown = f"[![Buy Me a Coffee]({image_url})]({bmc_link})"
|
|
|
|
|
|
|
|
st.markdown(image_link_markdown, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
input_image = st.file_uploader("Upload Image")
|
|
shosen_model = st.selectbox("Select the model to use", MODELS)
|
|
|
|
|
|
if input_image is not None:
|
|
image_to_classify = Image.open(input_image)
|
|
st.image(image_to_classify, caption="Uploaded Image")
|
|
if st.button("Classify"):
|
|
image_to_classify = Image.open(input_image)
|
|
classification_obj1 =[]
|
|
|
|
|
|
classification_result = classify(image_to_classify, shosen_model)
|
|
classification_obj1.append(classification_result)
|
|
print_result(classification_result)
|
|
save_result(classification_result)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |