File size: 7,187 Bytes
04f2180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import spacy
import wikipediaapi
import wikipedia
from wikipedia.exceptions import DisambiguationError
from transformers import TFAutoModel, AutoTokenizer
import numpy as np
import pandas as pd
import faiss
import gradio as gr

try:
  nlp = spacy.load("en_core_web_sm")
except:
  spacy.cli.download("en_core_web_sm")
  nlp = spacy.load("en_core_web_sm")

wh_words = ['what', 'who', 'how', 'when', 'which']
def get_concepts(text):
  text = text.lower()
  doc = nlp(text)
  concepts = []
  for chunk in doc.noun_chunks:
    if chunk.text not in wh_words:
      concepts.append(chunk.text)
  return concepts

def get_passages(text, k=100):
    doc = nlp(text)
    passages = []
    passage_len = 0
    passage = ""
    sents = list(doc.sents)
    for i in range(len(sents)):
        sen = sents[i]
        passage_len+=len(sen)
        if passage_len >= k:
            passages.append(passage)
            passage = sen.text
            passage_len = len(sen)
            continue

        elif i==(len(sents)-1):
            passage+=" "+sen.text
            passages.append(passage)
            passage = ""
            passage_len = 0
            continue

        passage+=" "+sen.text
    return passages

def get_dicts_for_dpr(concepts, n_results=20, k=100):
  dicts = []
  for concept in concepts:
    wikis = wikipedia.search(concept, results=n_results)
    print(concept, "No of Wikis: ",len(wikis))
    for wiki in wikis:
        try:
          html_page = wikipedia.page(title = wiki, auto_suggest = False)
        except DisambiguationError:
          continue
        
        htmlResults=html_page.content
        
        passages = get_passages(htmlResults, k=k)
        for passage in passages:
          i_dicts = {}
          i_dicts['text'] = passage
          i_dicts['title'] = wiki
          dicts.append(i_dicts)
  return dicts

passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")

def get_title_text_combined(passage_dicts):
    res = []
    for p in passage_dicts:
        res.append(tuple((p['title'], p['text'])))
    return res
    
def extracted_passage_embeddings(processed_passages, max_length=156):
    passage_inputs = p_tokenizer.batch_encode_plus(
                    processed_passages,
                    add_special_tokens=True,
                    truncation=True,
                    padding="max_length",
                    max_length=max_length,
                    return_token_type_ids=True
                )
    passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), 
                                                np.array(passage_inputs['attention_mask']), 
                                                np.array(passage_inputs['token_type_ids'])], 
                                                batch_size=64, 
                                                verbose=1)
    return passage_embeddings

def extracted_query_embeddings(queries, max_length=64):
    query_inputs = q_tokenizer.batch_encode_plus(
                    queries,
                    add_special_tokens=True,
                    truncation=True,
                    padding="max_length",
                    max_length=max_length,
                    return_token_type_ids=True
                )
    query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), 
                                                np.array(query_inputs['attention_mask']), 
                                                np.array(query_inputs['token_type_ids'])], 
                                                batch_size=1, 
                                                verbose=1)
    return query_embeddings
    
#Wikipedia API:

def get_pagetext(page):
  s=str(page).replace("/t","")
  
  return s

def get_wiki_summary(search):
    wiki_wiki = wikipediaapi.Wikipedia('en')
    page = wiki_wiki.page(search)

    isExist = page.exists()
    if not isExist:
        return isExist, "Not found", "Not found", "Not found", "Not found"

    pageurl = page.fullurl
    pagetitle = page.title
    pagesummary = page.summary[0:60]
    pagetext = get_pagetext(page.text)

    backlinks = page.backlinks
    linklist = ""
    for link in backlinks.items():
      pui = link[0]
      linklist += pui + " ,  "
      a=1 
      
    categories = page.categories
    categorylist = ""
    for category in categories.items():
      pui = category[0]
      categorylist += pui + " ,  "
      a=1     
    
    links = page.links
    linklist2 = ""
    for link in links.items():
      pui = link[0]
      linklist2 += pui + " ,  "
      a=1 
      
    sections = page.sections
    
    ex_dic = {
      'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
      'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
    }

    df = pd.DataFrame(ex_dic)
    
    return df
      
def search(question):
  concepts = get_concepts(question)
  print("concepts: ",concepts)
  dicts = get_dicts_for_dpr(concepts, n_results=1)
  lendicts = len(dicts)
  print("dicts len: ", lendicts)
  if lendicts == 0:
    return pd.DataFrame()
  processed_passages = get_title_text_combined(dicts)
  passage_embeddings = extracted_passage_embeddings(processed_passages)
  query_embeddings = extracted_query_embeddings([question])
  faiss_index = faiss.IndexFlatL2(128)
  faiss_index.add(passage_embeddings.pooler_output)
  prob, index = faiss_index.search(query_embeddings.pooler_output, k=lendicts)
  return pd.DataFrame([dicts[i] for i in index[0]])

# AI UI SOTA - Gradio blocks with UI formatting, and event driven UI
with gr.Blocks() as demo:     # Block documentation on event listeners, start here:  https://gradio.app/blocks_and_event_listeners/
  gr.Markdown("<h1><center>🍰 Ultimate Wikipedia AI 🎨</center></h1>")
  gr.Markdown("""<div align="center">Search and Find Anything Then Use in AI!  <a href="https://www.mediawiki.org/wiki/API:Main_page">MediaWiki - API for Wikipedia</a>.  <a href="https://paperswithcode.com/datasets?q=wikipedia&v=lst&o=newest">Papers,Code,Datasets for SOTA w/ Wikipedia</a>""")
  with gr.Row(): # inputs and buttons
    inp = gr.Textbox(lines=1, default="Syd Mead", label="Question")
  with gr.Row(): # inputs and buttons
    b3 = gr.Button("Search AI Summaries")    
    b4 = gr.Button("Search Web Live")
  with gr.Row(): # outputs DF1
    out = gr.Dataframe(label="Answers", type="pandas") 
  with gr.Row(): # output DF2
    out_DF = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate", datatype = ["markdown", "markdown"], headers=['Entity', 'Value'])
    inp.submit(fn=get_wiki_summary, inputs=inp, outputs=out_DF)
  b3.click(fn=search, inputs=inp, outputs=out)
  b4.click(fn=get_wiki_summary, inputs=inp, outputs=out_DF )
demo.launch(debug=True, show_error=True)