Spaces:
Running
on
Zero
Running
on
Zero
import re | |
import gradio as gr | |
from PIL import Image | |
def create_detection_tab(predict_fn, example_images): | |
with gr.TabItem("Breed Detection"): | |
gr.HTML(""" | |
<div style=' | |
text-align: center; | |
padding: 20px 0; | |
margin: 15px 0; | |
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1)); | |
border-radius: 10px; | |
'> | |
<p style=' | |
font-size: 1.2em; | |
margin: 0; | |
padding: 0 20px; | |
line-height: 1.5; | |
background: linear-gradient(90deg, #4299e1, #48bb78); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
font-weight: 600; | |
'> | |
Upload a picture of a dog, and the model will predict its breed and provide detailed information! | |
</p> | |
<p style=' | |
font-size: 0.9em; | |
color: #666; | |
margin-top: 8px; | |
padding: 0 20px; | |
'> | |
Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference. | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
input_image = gr.Image(label="Upload a dog image", type="pil") | |
output_image = gr.Image(label="Annotated Image") | |
output = gr.HTML(label="Prediction Results") | |
initial_state = gr.State() | |
input_image.change( | |
predict_fn, | |
inputs=input_image, | |
outputs=[output, output_image, initial_state] | |
) | |
gr.Examples( | |
examples=example_images, | |
inputs=input_image | |
) | |
return { | |
'input_image': input_image, | |
'output_image': output_image, | |
'output': output, | |
'initial_state': initial_state | |
} | |