DawnC commited on
Commit
3f1bf13
·
verified ·
1 Parent(s): dad60e5

Update scoring_calculation_system.py

Browse files
Files changed (1) hide show
  1. scoring_calculation_system.py +25 -72
scoring_calculation_system.py CHANGED
@@ -293,68 +293,6 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
293
  return base_score
294
 
295
 
296
- # def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
297
- # """飼養經驗需求計算"""
298
- # # 初始化 temperament_adjustments,確保所有路徑都有值
299
- # temperament_adjustments = 0.0
300
-
301
- # # 降低初學者的基礎分數
302
- # base_scores = {
303
- # "High": {"beginner": 0.15, "intermediate": 0.70, "advanced": 1.0},
304
- # "Moderate": {"beginner": 0.40, "intermediate": 0.85, "advanced": 1.0},
305
- # "Low": {"beginner": 0.75, "intermediate": 0.95, "advanced": 1.0}
306
- # }
307
-
308
- # score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
309
-
310
- # # 擴展性格特徵評估
311
- # temperament_lower = temperament.lower()
312
-
313
- # if user_experience == "beginner":
314
- # # 增加更多特徵評估
315
- # difficult_traits = {
316
- # 'stubborn': -0.12,
317
- # 'independent': -0.10,
318
- # 'dominant': -0.10,
319
- # 'strong-willed': -0.08,
320
- # 'protective': -0.06,
321
- # 'energetic': -0.05
322
- # }
323
-
324
- # easy_traits = {
325
- # 'gentle': 0.06,
326
- # 'friendly': 0.06,
327
- # 'eager to please': 0.06,
328
- # 'patient': 0.05,
329
- # 'adaptable': 0.05,
330
- # 'calm': 0.04
331
- # }
332
-
333
- # # 更精確的特徵影響計算
334
- # temperament_adjustments = sum(value for trait, value in easy_traits.items() if trait in temperament_lower)
335
- # temperament_adjustments += sum(value for trait, value in difficult_traits.items() if trait in temperament_lower)
336
-
337
- # # 品種特定調整
338
- # if "terrier" in breed_info['Description'].lower():
339
- # temperament_adjustments -= 0.1 # 梗類犬對新手不友善
340
-
341
- # elif user_experience == "intermediate":
342
- # # 中級飼主的調整較溫和
343
- # if any(trait in temperament_lower for trait in ['gentle', 'friendly', 'patient']):
344
- # temperament_adjustments += 0.03
345
- # if any(trait in temperament_lower for trait in ['stubborn', 'independent']):
346
- # temperament_adjustments -= 0.02
347
-
348
- # else: # advanced
349
- # # 資深飼主能處理更具挑戰性的犬種
350
- # if any(trait in temperament_lower for trait in ['stubborn', 'independent', 'dominant']):
351
- # temperament_adjustments += 0.02 # 反而可能是優點
352
- # if any(trait in temperament_lower for trait in ['protective', 'energetic']):
353
- # temperament_adjustments += 0.03
354
-
355
- # final_score = max(0.2, min(1.0, score + temperament_adjustments))
356
- # return final_score
357
-
358
  def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
359
  """
360
  計算使用者經驗與品種需求的匹配分數
@@ -616,19 +554,34 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
616
 
617
  # 計算加權總分
618
  weighted_score = sum(score * weights[category] for category, score in scores.items())
619
-
620
- # # 擴大分數差異
621
- # def amplify_score(score):
622
- # # 使用指數函數擴大差異
623
- # amplified = pow((score - 0.5) * 2, 3) / 8 + score
624
- # return max(0.65, min(0.95, amplified)) # 限制在65%-95%範圍內
625
 
626
  def amplify_score(score):
627
- """強化分數差異"""
 
 
 
 
 
 
 
 
628
  adjusted = (score - 0.35) * 1.8
629
- amplified = pow(adjusted, 3.5) / 6 + score
630
- # 範圍55%-95%
631
- return max(0.55, min(0.95, amplified))
 
 
 
 
 
 
 
 
 
 
 
 
 
632
 
633
  final_score = amplify_score(weighted_score)
634
 
 
293
  return base_score
294
 
295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
  def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
297
  """
298
  計算使用者經驗與品種需求的匹配分數
 
554
 
555
  # 計算加權總分
556
  weighted_score = sum(score * weights[category] for category, score in scores.items())
 
 
 
 
 
 
557
 
558
  def amplify_score(score):
559
+ """
560
+ 優化分數放大函數,產生更自然的分數分布
561
+
562
+ 改進:
563
+ - 使用更自然的指數關係
564
+ - 加入細微的隨機變化
565
+ - 避免過多的整數和半數
566
+ """
567
+ # 基礎調整
568
  adjusted = (score - 0.35) * 1.8
569
+
570
+ # 使用 3.2 次方使曲線更平滑
571
+ amplified = pow(adjusted, 3.2) / 5.8 + score
572
+
573
+ # 加入細微的隨機變化(約±0.3%)
574
+ import random
575
+ random_adjustment = random.uniform(-0.003, 0.003)
576
+
577
+ # 特別處理高分區間,使其更分散
578
+ if amplified > 0.95:
579
+ amplified = 0.95 + (amplified - 0.95) * 0.6
580
+
581
+ final_score = max(0.55, min(0.98, amplified + random_adjustment))
582
+
583
+ # 避免過多的 .0 和 .5 結尾
584
+ return round(final_score + random.uniform(-0.001, 0.001), 3)
585
 
586
  final_score = amplify_score(weighted_score)
587