Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,424 Bytes
91e8f79 f7577e0 91e8f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import torch
import gradio as gr
import numpy as np
from PIL import Image
from einops import rearrange
import requests
import spaces
from huggingface_hub import login
from gradio_imageslider import ImageSlider # Import ImageSlider
from image_datasets.canny_dataset import canny_processor, c_crop
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
# Define the flux_time_shift function
def flux_time_shift(shift, base, timestep):
return base * (timestep ** shift)
# Define the ModelSamplingFlux class
class ModelSamplingFlux(torch.nn.Module):
def __init__(self, model_config=None):
super().__init__()
if model_config is not None:
sampling_settings = model_config.get("sampling_settings", {})
else:
sampling_settings = {}
self.set_parameters(shift=sampling_settings.get("shift", 1.15))
def set_parameters(self, shift=1.15, timesteps=10000):
self.shift = shift
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps))
self.register_buffer('sigmas', ts)
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
return sigma
def sigma(self, timestep):
return flux_time_shift(self.shift, 1.0, timestep)
def percent_to_sigma(self, percent):
if percent <= 0.0:
return 1.0
if percent >= 1.0:
return 0.0
return 1.0 - percent
# Download and load the ControlNet model
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/resolve/main/flux-canny-controlnet-v3.safetensors?download=true"
model_path = "./flux-canny-controlnet-v3.safetensors"
if not os.path.exists(model_path):
response = requests.get(model_url)
with open(model_path, 'wb') as f:
f.write(response.content)
# Source: https://github.com/XLabs-AI/x-flux.git
name = "flux-dev"
device = torch.device("cuda")
offload = False
is_schnell = name == "flux-schnell"
def preprocess_image(image, target_width, target_height, crop=True):
if crop:
image = c_crop(image) # Crop the image to square
original_width, original_height = image.size
# Resize to match the target size without stretching
scale = max(target_width / original_width, target_height / original_height)
resized_width = int(scale * original_width)
resized_height = int(scale * original_height)
image = image.resize((resized_width, resized_height), Image.LANCZOS)
# Center crop to match the target dimensions
left = (resized_width - target_width) // 2
top = (resized_height - target_height) // 2
image = image.crop((left, top, left + target_width, top + target_height))
return image
def preprocess_canny_image(image, target_width, target_height, crop=True):
image = preprocess_image(image, target_width, target_height, crop=crop)
image = canny_processor(image)
return image
@spaces.GPU(duration=120)
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False, max_shift=1.5, base_shift=1.15):
if random_seed:
seed = np.random.randint(0, 10000000)
if not os.path.isdir("./controlnet_results/"):
os.makedirs("./controlnet_results/")
torch_device = torch.device("cuda")
torch.cuda.empty_cache() # Clear GPU cache
model = load_flow_model(name, device=torch_device)
t5 = load_t5(torch_device, max_length=256 if is_schnell else 512)
clip = load_clip(torch_device)
ae = load_ae(name, device=torch_device)
controlnet = load_controlnet(name, torch_device).to(torch_device).to(torch.bfloat16)
checkpoint = load_safetensors(model_path)
controlnet.load_state_dict(checkpoint, strict=False)
width = 16 * width // 16
height = 16 * height // 16
# Initialize ModelSamplingFlux with the provided shifts
sampling_model = ModelSamplingFlux()
sampling_model.set_parameters(shift=base_shift, timesteps=num_steps)
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=max_shift)
processed_input = preprocess_image(control_image, width, height)
canny_processed = preprocess_canny_image(control_image, width, height)
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
torch.manual_seed(seed)
with torch.no_grad():
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
x = unpack(x.float(), height, width)
x = ae.decode(x)
x1 = x.clamp(-1, 1)
x1 = rearrange(x1[-1], "c h w -> h w c")
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
return [processed_input, output_img] # Return both images for slider
interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Image(type="pil", label="Control Image"),
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"),
gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"),
gr.Slider(minimum=0, maximum=9999999, step=1, value=42, label="Seed"),
gr.Checkbox(label="Random Seed"),
gr.Slider(minimum=1.0, maximum=2.0, step=0.01, value=1.5, label="Max Shift"),
gr.Slider(minimum=1.0, maximum=2.0, step=0.01, value=1.15, label="Base Shift")
],
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
title="FLUX.1 Controlnet Canny",
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
)
if __name__ == "__main__":
interface.launch() |