File size: 6,424 Bytes
91e8f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7577e0
 
 
 
91e8f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import torch
import gradio as gr
import numpy as np
from PIL import Image
from einops import rearrange
import requests
import spaces
from huggingface_hub import login
from gradio_imageslider import ImageSlider  # Import ImageSlider

from image_datasets.canny_dataset import canny_processor, c_crop
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors

# Define the flux_time_shift function
def flux_time_shift(shift, base, timestep):
    return base * (timestep ** shift)

# Define the ModelSamplingFlux class
class ModelSamplingFlux(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.get("sampling_settings", {})
        else:
            sampling_settings = {}

        self.set_parameters(shift=sampling_settings.get("shift", 1.15))

    def set_parameters(self, shift=1.15, timesteps=10000):
        self.shift = shift
        ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps))
        self.register_buffer('sigmas', ts)

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return sigma

    def sigma(self, timestep):
        return flux_time_shift(self.shift, 1.0, timestep)

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 1.0
        if percent >= 1.0:
            return 0.0
        return 1.0 - percent

# Download and load the ControlNet model
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/resolve/main/flux-canny-controlnet-v3.safetensors?download=true"
model_path = "./flux-canny-controlnet-v3.safetensors"
if not os.path.exists(model_path):
    response = requests.get(model_url)
    with open(model_path, 'wb') as f:
        f.write(response.content)

# Source: https://github.com/XLabs-AI/x-flux.git
name = "flux-dev"
device = torch.device("cuda")
offload = False
is_schnell = name == "flux-schnell"

def preprocess_image(image, target_width, target_height, crop=True):
    if crop:
        image = c_crop(image)  # Crop the image to square
    original_width, original_height = image.size

    # Resize to match the target size without stretching
    scale = max(target_width / original_width, target_height / original_height)
    resized_width = int(scale * original_width)
    resized_height = int(scale * original_height)

    image = image.resize((resized_width, resized_height), Image.LANCZOS)
    
    # Center crop to match the target dimensions
    left = (resized_width - target_width) // 2
    top = (resized_height - target_height) // 2
    image = image.crop((left, top, left + target_width, top + target_height))
    return image

def preprocess_canny_image(image, target_width, target_height, crop=True):
    image = preprocess_image(image, target_width, target_height, crop=crop)
    image = canny_processor(image)
    return image

@spaces.GPU(duration=120)
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False, max_shift=1.5, base_shift=1.15):
    if random_seed:
        seed = np.random.randint(0, 10000000)

    if not os.path.isdir("./controlnet_results/"):
        os.makedirs("./controlnet_results/")

    torch_device = torch.device("cuda")

    torch.cuda.empty_cache()  # Clear GPU cache

    model = load_flow_model(name, device=torch_device)
    t5 = load_t5(torch_device, max_length=256 if is_schnell else 512)
    clip = load_clip(torch_device)
    ae = load_ae(name, device=torch_device)
    controlnet = load_controlnet(name, torch_device).to(torch_device).to(torch.bfloat16)

    checkpoint = load_safetensors(model_path)
    controlnet.load_state_dict(checkpoint, strict=False)

    width = 16 * width // 16
    height = 16 * height // 16

    # Initialize ModelSamplingFlux with the provided shifts
    sampling_model = ModelSamplingFlux()
    sampling_model.set_parameters(shift=base_shift, timesteps=num_steps)

    timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=max_shift)

    processed_input = preprocess_image(control_image, width, height)
    canny_processed = preprocess_canny_image(control_image, width, height)
    controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
    controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)

    torch.manual_seed(seed)
    with torch.no_grad():
        x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
        inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)

        x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
        
        x = unpack(x.float(), height, width)
        x = ae.decode(x)

    x1 = x.clamp(-1, 1)
    x1 = rearrange(x1[-1], "c h w -> h w c")
    output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())

    return [processed_input, output_img]  # Return both images for slider

interface = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Prompt"),
        gr.Image(type="pil", label="Control Image"),
        gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
        gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
        gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Width"),
        gr.Slider(minimum=128, maximum=1024, step=128, value=512, label="Height"),
        gr.Slider(minimum=0, maximum=9999999, step=1, value=42, label="Seed"),
        gr.Checkbox(label="Random Seed"),
        gr.Slider(minimum=1.0, maximum=2.0, step=0.01, value=1.5, label="Max Shift"),
        gr.Slider(minimum=1.0, maximum=2.0, step=0.01, value=1.15, label="Base Shift")
    ],
    outputs=ImageSlider(label="Before / After"),  # Use ImageSlider as the output
    title="FLUX.1 Controlnet Canny",
    description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
)

if __name__ == "__main__":
    interface.launch()