Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from transformers import AutoFeatureExtractor | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus | |
from huggingface_hub import hf_hub_download | |
from insightface.app import FaceAnalysis | |
from insightface.utils import face_align | |
import gradio as gr | |
import cv2 | |
base_model_paths = { | |
"RealisticVisionV4": "SG161222/Realistic_Vision_V4.0_noVAE", | |
"RealisticVisionV6": "SG161222/Realistic_Vision_V6.0_B1_noVAE", | |
"Deliberate": "Yntec/Deliberate", | |
"DeliberateV2": "Yntec/Deliberate2", | |
"Dreamshaper8": "Lykon/dreamshaper-8", | |
"EpicRealism": "emilianJR/epiCRealism" | |
} | |
vae_model_path = "stabilityai/sd-vae-ft-mse" | |
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") | |
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") | |
safety_model_id = "CompVis/stable-diffusion-safety-checker" | |
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) | |
device = "cuda" | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) | |
def load_model(base_model_path): | |
pipe = StableDiffusionPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
scheduler=noise_scheduler, | |
vae=vae, | |
feature_extractor=safety_feature_extractor, | |
safety_checker=None # <--- Disable safety checker | |
).to(device) | |
return pipe | |
ip_model = None | |
ip_model_plus = None | |
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
cv2.setNumThreads(1) | |
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, base_model, num_inference_steps, guidance_scale, width, height, progress=gr.Progress(track_tqdm=True)): | |
global ip_model, ip_model_plus | |
base_model_path = base_model_paths[base_model] | |
pipe = load_model(base_model_path) | |
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) | |
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) | |
faceid_all_embeds = [] | |
first_iteration = True | |
for image in images: | |
face = cv2.imread(image) | |
faces = app.get(face) | |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
faceid_all_embeds.append(faceid_embed) | |
if(first_iteration and preserve_face_structure): | |
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face | |
first_iteration = False | |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) | |
total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}" | |
if(not preserve_face_structure): | |
print("Generating normal") | |
image = ip_model.generate( | |
prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding, | |
scale=likeness_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale | |
) | |
else: | |
print("Generating plus") | |
image = ip_model_plus.generate( | |
prompt=prompt, negative_prompt=total_negative_prompt, faceid_embeds=average_embedding, | |
scale=likeness_strength, face_image=face_image, shortcut=True, s_scale=face_strength, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale | |
) | |
print(image) | |
return image | |
def change_style(style): | |
if style == "Photorealistic": | |
return(gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)) | |
else: | |
return(gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)) | |
def swap_to_gallery(images): | |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) | |
def remove_back_to_files(): | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
css = ''' | |
h1{margin-bottom: 0 !important} | |
footer{display:none !important} | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("") | |
gr.Markdown("") | |
with gr.Row(): | |
with gr.Column(): | |
files = gr.Files( | |
label="Drag 1 or more photos of your face", | |
file_types=["image"] | |
) | |
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125) | |
with gr.Column(visible=False) as clear_button: | |
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm") | |
prompt = gr.Textbox(label="Prompt", | |
info="Try something like 'a photo of a man/woman/person'", | |
placeholder="A photo of a [man/woman/person]...") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality") | |
style = gr.Radio(label="Generation type", info="For stylized try prompts like 'a watercolor painting of a woman'", choices=["Photorealistic", "Stylized"], value="Photorealistic") | |
base_model = gr.Dropdown(label="Base Model", choices=list(base_model_paths.keys()), value="Realistic_Vision_V4.0_noVAE") | |
submit = gr.Button("Submit") | |
with gr.Accordion(open=False, label="Advanced Options"): | |
preserve = gr.Checkbox(label="Preserve Face Structure", info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", value=True) | |
face_strength = gr.Slider(label="Face Structure strength", info="Only applied if preserve face structure is checked", value=1.3, step=0.1, minimum=0, maximum=3) | |
likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5) | |
nfaa_negative_prompts = gr.Textbox(label="Appended Negative Prompts", info="Negative prompts to steer generations towards safe for all audiences outputs", value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through") | |
num_inference_steps = gr.Slider(label="Number of Inference Steps", value=30, step=1, minimum=10, maximum=100) | |
guidance_scale = gr.Slider(label="Guidance Scale", value=7.5, step=0.1, minimum=1, maximum=20) | |
width = gr.Slider(label="Width", value=512, step=64, minimum=256, maximum=1024) | |
height = gr.Slider(label="Height", value=512, step=64, minimum=256, maximum=1024) | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated Images") | |
style.change(fn=change_style, | |
inputs=style, | |
outputs=[preserve, face_strength, likeness_strength]) | |
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]) | |
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]) | |
submit.click(fn=generate_image, | |
inputs=[files,prompt,negative_prompt,preserve, face_strength, likeness_strength, nfaa_negative_prompts, base_model, num_inference_steps, guidance_scale, width, height], | |
outputs=gallery) | |
gr.Markdown("") | |
demo.launch() |