Spaces:
Sleeping
Sleeping
Upload 10 files
Browse files- app.py +166 -0
- config.py +33 -0
- dataset.py +90 -0
- model.py +267 -0
- predict.py +16 -0
- requirements.txt +16 -0
- tokenizer_en.json +0 -0
- tokenizer_it.json +0 -0
- train.py +283 -0
- translate.py +79 -0
app.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModel, utils
|
3 |
+
from bertviz import model_view
|
4 |
+
import streamlit.components.v1 as components
|
5 |
+
from train import get_or_build_tokenizer, greedy_decode
|
6 |
+
from config import get_config, latest_weights_file_path
|
7 |
+
from model import build_transformer
|
8 |
+
import torch
|
9 |
+
from bertviz import model_view
|
10 |
+
import torch
|
11 |
+
import altair as alt
|
12 |
+
import pandas as pd
|
13 |
+
import warnings
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
utils.logging.set_verbosity_error() # Suppress standard warnings
|
17 |
+
|
18 |
+
st.set_page_config(page_title='Attention Visualizer', layout='wide')
|
19 |
+
|
20 |
+
def mtx2df(m, max_row, max_col, row_tokens, col_tokens):
|
21 |
+
return pd.DataFrame(
|
22 |
+
[
|
23 |
+
(
|
24 |
+
r,
|
25 |
+
c,
|
26 |
+
float(m[r, c]),
|
27 |
+
"%.2d - %s" % (r, row_tokens[r] if len(row_tokens) > r else "<blank>"),
|
28 |
+
"%.2d - %s" % (c, col_tokens[c] if len(col_tokens) > c else "<blank>"),
|
29 |
+
)
|
30 |
+
for r in range(m.shape[0])
|
31 |
+
for c in range(m.shape[1])
|
32 |
+
if r < max_row and c < max_col
|
33 |
+
],
|
34 |
+
columns=["row", "column", "value", "row_token", "col_token"],
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def get_attn_map(attn_type: str, layer: int, head: int, model):
|
39 |
+
if attn_type == "encoder":
|
40 |
+
attn = model.encoder.layers[layer].self_attention_block.attention_scores
|
41 |
+
elif attn_type == "decoder":
|
42 |
+
attn = model.decoder.layers[layer].self_attention_block.attention_scores
|
43 |
+
elif attn_type == "encoder-decoder":
|
44 |
+
attn = model.decoder.layers[layer].cross_attention_block.attention_scores
|
45 |
+
return attn[0, head].data
|
46 |
+
|
47 |
+
def attn_map(attn_type, layer, head, row_tokens, col_tokens, max_sentence_len, model):
|
48 |
+
df = mtx2df(
|
49 |
+
get_attn_map(attn_type, layer, head, model),
|
50 |
+
max_sentence_len,
|
51 |
+
max_sentence_len,
|
52 |
+
row_tokens,
|
53 |
+
col_tokens,
|
54 |
+
)
|
55 |
+
return (
|
56 |
+
alt.Chart(data=df)
|
57 |
+
.mark_rect()
|
58 |
+
.encode(
|
59 |
+
x=alt.X("col_token", axis=alt.Axis(title="")),
|
60 |
+
y=alt.Y("row_token", axis=alt.Axis(title="")),
|
61 |
+
color=alt.Color("value", scale=alt.Scale(scheme="blues")),
|
62 |
+
tooltip=["row", "column", "value", "row_token", "col_token"],
|
63 |
+
)
|
64 |
+
#.title(f"Layer {layer} Head {head}")
|
65 |
+
.properties(height=200, width=200, title=f"Layer {layer} Head {head}")
|
66 |
+
.interactive()
|
67 |
+
)
|
68 |
+
|
69 |
+
def get_all_attention_maps(attn_type: str, layers: list[int], heads: list[int], row_tokens: list, col_tokens, max_sentence_len: int, model):
|
70 |
+
charts = []
|
71 |
+
for layer in layers:
|
72 |
+
rowCharts = []
|
73 |
+
for head in heads:
|
74 |
+
rowCharts.append(attn_map(attn_type, layer, head, row_tokens, col_tokens, max_sentence_len, model))
|
75 |
+
charts.append(alt.hconcat(*rowCharts))
|
76 |
+
return alt.vconcat(*charts)
|
77 |
+
|
78 |
+
def initiate_model(config, device):
|
79 |
+
tokenizer_src = get_or_build_tokenizer(config, None, config["lang_src"])
|
80 |
+
tokenizer_tgt = get_or_build_tokenizer(config, None, config["lang_tgt"])
|
81 |
+
|
82 |
+
model = build_transformer(tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size(), config["seq_len"], config['seq_len'], d_model=config['d_model']).to(device)
|
83 |
+
|
84 |
+
model_filename = latest_weights_file_path(config)
|
85 |
+
state = torch.load(model_filename)
|
86 |
+
model.load_state_dict(state['model_state_dict'])
|
87 |
+
return model, tokenizer_src, tokenizer_tgt
|
88 |
+
|
89 |
+
def process_input(input_text, tokenizer_src, tokenizer_tgt, model, config, device):
|
90 |
+
src = tokenizer_src.encode(input_text)
|
91 |
+
src = torch.cat([
|
92 |
+
torch.tensor([tokenizer_src.token_to_id('[SOS]')], dtype=torch.int64),
|
93 |
+
torch.tensor(src.ids, dtype=torch.int64),
|
94 |
+
torch.tensor([tokenizer_src.token_to_id('[EOS]')], dtype=torch.int64),
|
95 |
+
torch.tensor([tokenizer_src.token_to_id('[PAD]')] * (config['seq_len'] - len(src.ids) - 2), dtype=torch.int64)
|
96 |
+
], dim=0).to(device)
|
97 |
+
source_mask = (src != tokenizer_src.token_to_id('[PAD]')).unsqueeze(0).unsqueeze(0).int().to(device)
|
98 |
+
|
99 |
+
encoder_input_tokens = [tokenizer_src.id_to_token(i) for i in src.cpu().numpy()]
|
100 |
+
encoder_input_tokens = [i for i in encoder_input_tokens if i != '[PAD]']
|
101 |
+
|
102 |
+
model_out = greedy_decode(model, src, source_mask, tokenizer_src, tokenizer_tgt, config['seq_len'], device)
|
103 |
+
|
104 |
+
decoder_input_tokens = [tokenizer_tgt.id_to_token(i) for i in model_out.cpu().numpy()]
|
105 |
+
|
106 |
+
output = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
|
107 |
+
|
108 |
+
return encoder_input_tokens, decoder_input_tokens, output
|
109 |
+
|
110 |
+
|
111 |
+
# def get_html_data(model_name, input_text):
|
112 |
+
# model_name ="microsoft/xtremedistil-l12-h384-uncased"
|
113 |
+
# model = AutoModel.from_pretrained(model_name, output_attentions=True, cache_dir='__pycache__') # Configure model to return attention values
|
114 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
115 |
+
# inputs = tokenizer.encode(input_text, return_tensors='pt') # Tokenize input text
|
116 |
+
# outputs = model(inputs) # Run model
|
117 |
+
# attention = outputs[-1] # Retrieve attention from model outputs
|
118 |
+
# tokens = tokenizer.convert_ids_to_tokens(inputs[0]) # Convert input ids to token strings
|
119 |
+
# model_html = model_view(attention, tokens, html_action="return") # Display model view
|
120 |
+
# with open("static/model_view.html", 'w') as file:
|
121 |
+
# file.write(model_html.data)
|
122 |
+
|
123 |
+
def main():
|
124 |
+
st.title('Transformer Visualizer')
|
125 |
+
# st.info('Enter a sentence to visualize the attention of the model')
|
126 |
+
st.write('This app visualizes the attention of a transformer model on a given sentence.')
|
127 |
+
# add a side bar with model options and a prompt
|
128 |
+
config = get_config()
|
129 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
130 |
+
model, tokenizer_src, tokenizer_tgt = initiate_model(config, device)
|
131 |
+
with st.sidebar:
|
132 |
+
input_text = st.text_input('Enter a sentence')
|
133 |
+
# put two buttons side by side in the sidebar
|
134 |
+
# translate_button = st.button('Translate', key='translate_button')
|
135 |
+
viz_button = st.button('Visualize Attention', key='viz_button')
|
136 |
+
attn_type = st.selectbox('Select attention type', ['encoder', 'decoder', 'encoder-decoder'])
|
137 |
+
layers = st.multiselect('Select layers', list(range(3)))
|
138 |
+
heads = st.multiselect('Select heads', list(range(7)))
|
139 |
+
# allow the user to select the all the layers and heads at once to visualize
|
140 |
+
if st.checkbox('Select all layers'):
|
141 |
+
layers = list(range(3))
|
142 |
+
if st.checkbox('Select all heads'):
|
143 |
+
heads = list(range(7))
|
144 |
+
|
145 |
+
if viz_button and input_text != '':
|
146 |
+
encoder_input_tokens, decoder_input_tokens, output = process_input(input_text, tokenizer_src, tokenizer_tgt, model, config, device)
|
147 |
+
max_sentence_len = len(encoder_input_tokens)
|
148 |
+
row_tokens = encoder_input_tokens
|
149 |
+
col_tokens = decoder_input_tokens
|
150 |
+
st.write('Input:', ' '.join(encoder_input_tokens))
|
151 |
+
st.write('Output:', ' '.join(decoder_input_tokens))
|
152 |
+
st.write('Translated:', output)
|
153 |
+
st.write('Attention Visualization')
|
154 |
+
st.write(get_all_attention_maps(attn_type, layers, heads, row_tokens, col_tokens, max_sentence_len, model))
|
155 |
+
else:
|
156 |
+
st.write('Enter a sentence to visualize the attention of the model')
|
157 |
+
|
158 |
+
# add a footer with the github repo link and dataset link
|
159 |
+
st.markdown('---')
|
160 |
+
st.write('Made by [Pratik Dwivedi](https://github.com/Dekode1859)')
|
161 |
+
st.write('Check out the Scratch Implementation and Visualizer Code on [GitHub](https://github.com/Dekode1859/transformer-visualizer)')
|
162 |
+
st.write('Dataset: [Opus-books: english-Italian](https://huggingface.co/datasets/Helsinki-NLP/opus_books)')
|
163 |
+
# st.write('This app is a Streamlit implementation of the [BERTViz](
|
164 |
+
|
165 |
+
if __name__ == '__main__':
|
166 |
+
main()
|
config.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
def get_config():
|
4 |
+
return {
|
5 |
+
"batch_size": 8,
|
6 |
+
"num_epochs": 20,
|
7 |
+
"lr": 10**-4,
|
8 |
+
"seq_len": 350,
|
9 |
+
"d_model": 512,
|
10 |
+
"datasource": 'opus_books',
|
11 |
+
"lang_src": "en",
|
12 |
+
"lang_tgt": "it",
|
13 |
+
"model_folder": "weights",
|
14 |
+
"model_basename": "tmodel_",
|
15 |
+
"preload": "latest",
|
16 |
+
"tokenizer_file": "tokenizer_{0}.json",
|
17 |
+
"experiment_name": "runs/tmodel"
|
18 |
+
}
|
19 |
+
|
20 |
+
def get_weights_file_path(config, epoch: str):
|
21 |
+
model_folder = f"{config['datasource']}_{config['model_folder']}"
|
22 |
+
model_filename = f"{config['model_basename']}{epoch}.pt"
|
23 |
+
return str(Path('.') / model_folder / model_filename)
|
24 |
+
|
25 |
+
# Find the latest weights file in the weights folder
|
26 |
+
def latest_weights_file_path(config):
|
27 |
+
model_folder = f"{config['datasource']}_{config['model_folder']}"
|
28 |
+
model_filename = f"{config['model_basename']}*"
|
29 |
+
weights_files = list(Path(model_folder).glob(model_filename))
|
30 |
+
if len(weights_files) == 0:
|
31 |
+
return None
|
32 |
+
weights_files.sort()
|
33 |
+
return str(weights_files[-1])
|
dataset.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
|
5 |
+
class BilingualDataset(Dataset):
|
6 |
+
|
7 |
+
def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len):
|
8 |
+
super().__init__()
|
9 |
+
self.seq_len = seq_len
|
10 |
+
|
11 |
+
self.ds = ds
|
12 |
+
self.tokenizer_src = tokenizer_src
|
13 |
+
self.tokenizer_tgt = tokenizer_tgt
|
14 |
+
self.src_lang = src_lang
|
15 |
+
self.tgt_lang = tgt_lang
|
16 |
+
|
17 |
+
self.sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64)
|
18 |
+
self.eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64)
|
19 |
+
self.pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64)
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.ds)
|
23 |
+
|
24 |
+
def __getitem__(self, idx):
|
25 |
+
src_target_pair = self.ds[idx]
|
26 |
+
src_text = src_target_pair['translation'][self.src_lang]
|
27 |
+
tgt_text = src_target_pair['translation'][self.tgt_lang]
|
28 |
+
|
29 |
+
# Transform the text into tokens
|
30 |
+
enc_input_tokens = self.tokenizer_src.encode(src_text).ids
|
31 |
+
dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids
|
32 |
+
|
33 |
+
# Add sos, eos and padding to each sentence
|
34 |
+
enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 # We will add <s> and </s>
|
35 |
+
# We will only add <s>, and </s> only on the label
|
36 |
+
dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1
|
37 |
+
|
38 |
+
# Make sure the number of padding tokens is not negative. If it is, the sentence is too long
|
39 |
+
if enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0:
|
40 |
+
raise ValueError("Sentence is too long")
|
41 |
+
|
42 |
+
# Add <s> and </s> token
|
43 |
+
encoder_input = torch.cat(
|
44 |
+
[
|
45 |
+
self.sos_token,
|
46 |
+
torch.tensor(enc_input_tokens, dtype=torch.int64),
|
47 |
+
self.eos_token,
|
48 |
+
torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64),
|
49 |
+
],
|
50 |
+
dim=0,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Add only <s> token
|
54 |
+
decoder_input = torch.cat(
|
55 |
+
[
|
56 |
+
self.sos_token,
|
57 |
+
torch.tensor(dec_input_tokens, dtype=torch.int64),
|
58 |
+
torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64),
|
59 |
+
],
|
60 |
+
dim=0,
|
61 |
+
)
|
62 |
+
|
63 |
+
# Add only </s> token
|
64 |
+
label = torch.cat(
|
65 |
+
[
|
66 |
+
torch.tensor(dec_input_tokens, dtype=torch.int64),
|
67 |
+
self.eos_token,
|
68 |
+
torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64),
|
69 |
+
],
|
70 |
+
dim=0,
|
71 |
+
)
|
72 |
+
|
73 |
+
# Double check the size of the tensors to make sure they are all seq_len long
|
74 |
+
assert encoder_input.size(0) == self.seq_len
|
75 |
+
assert decoder_input.size(0) == self.seq_len
|
76 |
+
assert label.size(0) == self.seq_len
|
77 |
+
|
78 |
+
return {
|
79 |
+
"encoder_input": encoder_input, # (seq_len)
|
80 |
+
"decoder_input": decoder_input, # (seq_len)
|
81 |
+
"encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), # (1, 1, seq_len)
|
82 |
+
"decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), # (1, seq_len) & (1, seq_len, seq_len),
|
83 |
+
"label": label, # (seq_len)
|
84 |
+
"src_text": src_text,
|
85 |
+
"tgt_text": tgt_text,
|
86 |
+
}
|
87 |
+
|
88 |
+
def causal_mask(size):
|
89 |
+
mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int)
|
90 |
+
return mask == 0
|
model.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import math
|
4 |
+
|
5 |
+
class LayerNormalization(nn.Module):
|
6 |
+
|
7 |
+
def __init__(self, features: int, eps:float=10**-6) -> None:
|
8 |
+
super().__init__()
|
9 |
+
self.eps = eps
|
10 |
+
self.alpha = nn.Parameter(torch.ones(features)) # alpha is a learnable parameter
|
11 |
+
self.bias = nn.Parameter(torch.zeros(features)) # bias is a learnable parameter
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
# x: (batch, seq_len, hidden_size)
|
15 |
+
# Keep the dimension for broadcasting
|
16 |
+
mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1)
|
17 |
+
# Keep the dimension for broadcasting
|
18 |
+
std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1)
|
19 |
+
# eps is to prevent dividing by zero or when std is very small
|
20 |
+
return self.alpha * (x - mean) / (std + self.eps) + self.bias
|
21 |
+
|
22 |
+
class FeedForwardBlock(nn.Module):
|
23 |
+
|
24 |
+
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
|
25 |
+
super().__init__()
|
26 |
+
self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1
|
27 |
+
self.dropout = nn.Dropout(dropout)
|
28 |
+
self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model)
|
32 |
+
return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
|
33 |
+
|
34 |
+
class InputEmbeddings(nn.Module):
|
35 |
+
|
36 |
+
def __init__(self, d_model: int, vocab_size: int) -> None:
|
37 |
+
super().__init__()
|
38 |
+
self.d_model = d_model
|
39 |
+
self.vocab_size = vocab_size
|
40 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
# (batch, seq_len) --> (batch, seq_len, d_model)
|
44 |
+
# Multiply by sqrt(d_model) to scale the embeddings according to the paper
|
45 |
+
return self.embedding(x) * math.sqrt(self.d_model)
|
46 |
+
|
47 |
+
class PositionalEncoding(nn.Module):
|
48 |
+
|
49 |
+
def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
|
50 |
+
super().__init__()
|
51 |
+
self.d_model = d_model
|
52 |
+
self.seq_len = seq_len
|
53 |
+
self.dropout = nn.Dropout(dropout)
|
54 |
+
# Create a matrix of shape (seq_len, d_model)
|
55 |
+
pe = torch.zeros(seq_len, d_model)
|
56 |
+
# Create a vector of shape (seq_len)
|
57 |
+
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1)
|
58 |
+
# Create a vector of shape (d_model)
|
59 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2)
|
60 |
+
# Apply sine to even indices
|
61 |
+
pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model))
|
62 |
+
# Apply cosine to odd indices
|
63 |
+
pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model))
|
64 |
+
# Add a batch dimension to the positional encoding
|
65 |
+
pe = pe.unsqueeze(0) # (1, seq_len, d_model)
|
66 |
+
# Register the positional encoding as a buffer
|
67 |
+
self.register_buffer('pe', pe)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model)
|
71 |
+
return self.dropout(x)
|
72 |
+
|
73 |
+
class ResidualConnection(nn.Module):
|
74 |
+
|
75 |
+
def __init__(self, features: int, dropout: float) -> None:
|
76 |
+
super().__init__()
|
77 |
+
self.dropout = nn.Dropout(dropout)
|
78 |
+
self.norm = LayerNormalization(features)
|
79 |
+
|
80 |
+
def forward(self, x, sublayer):
|
81 |
+
return x + self.dropout(sublayer(self.norm(x)))
|
82 |
+
|
83 |
+
class MultiHeadAttentionBlock(nn.Module):
|
84 |
+
|
85 |
+
def __init__(self, d_model: int, h: int, dropout: float) -> None:
|
86 |
+
super().__init__()
|
87 |
+
self.d_model = d_model # Embedding vector size
|
88 |
+
self.h = h # Number of heads
|
89 |
+
# Make sure d_model is divisible by h
|
90 |
+
assert d_model % h == 0, "d_model is not divisible by h"
|
91 |
+
|
92 |
+
self.d_k = d_model // h # Dimension of vector seen by each head
|
93 |
+
self.w_q = nn.Linear(d_model, d_model, bias=False) # Wq
|
94 |
+
self.w_k = nn.Linear(d_model, d_model, bias=False) # Wk
|
95 |
+
self.w_v = nn.Linear(d_model, d_model, bias=False) # Wv
|
96 |
+
self.w_o = nn.Linear(d_model, d_model, bias=False) # Wo
|
97 |
+
self.dropout = nn.Dropout(dropout)
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def attention(query, key, value, mask, dropout: nn.Dropout):
|
101 |
+
d_k = query.shape[-1]
|
102 |
+
# Just apply the formula from the paper
|
103 |
+
# (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
|
104 |
+
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
|
105 |
+
if mask is not None:
|
106 |
+
# Write a very low value (indicating -inf) to the positions where mask == 0
|
107 |
+
attention_scores.masked_fill_(mask == 0, -1e9)
|
108 |
+
attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax
|
109 |
+
if dropout is not None:
|
110 |
+
attention_scores = dropout(attention_scores)
|
111 |
+
# (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k)
|
112 |
+
# return attention scores which can be used for visualization
|
113 |
+
return (attention_scores @ value), attention_scores
|
114 |
+
|
115 |
+
def forward(self, q, k, v, mask):
|
116 |
+
query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
117 |
+
key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
118 |
+
value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
119 |
+
|
120 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
|
121 |
+
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
|
122 |
+
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
|
123 |
+
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)
|
124 |
+
|
125 |
+
# Calculate attention
|
126 |
+
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
|
127 |
+
|
128 |
+
# Combine all the heads together
|
129 |
+
# (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model)
|
130 |
+
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)
|
131 |
+
|
132 |
+
# Multiply by Wo
|
133 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
134 |
+
return self.w_o(x)
|
135 |
+
|
136 |
+
class EncoderBlock(nn.Module):
|
137 |
+
|
138 |
+
def __init__(self, features: int, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None:
|
139 |
+
super().__init__()
|
140 |
+
self.self_attention_block = self_attention_block
|
141 |
+
self.feed_forward_block = feed_forward_block
|
142 |
+
self.residual_connections = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(2)])
|
143 |
+
|
144 |
+
def forward(self, x, src_mask):
|
145 |
+
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, src_mask))
|
146 |
+
x = self.residual_connections[1](x, self.feed_forward_block)
|
147 |
+
return x
|
148 |
+
|
149 |
+
class Encoder(nn.Module):
|
150 |
+
|
151 |
+
def __init__(self, features: int, layers: nn.ModuleList) -> None:
|
152 |
+
super().__init__()
|
153 |
+
self.layers = layers
|
154 |
+
self.norm = LayerNormalization(features)
|
155 |
+
|
156 |
+
def forward(self, x, mask):
|
157 |
+
for layer in self.layers:
|
158 |
+
x = layer(x, mask)
|
159 |
+
return self.norm(x)
|
160 |
+
|
161 |
+
class DecoderBlock(nn.Module):
|
162 |
+
|
163 |
+
def __init__(self, features: int, self_attention_block: MultiHeadAttentionBlock, cross_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None:
|
164 |
+
super().__init__()
|
165 |
+
self.self_attention_block = self_attention_block
|
166 |
+
self.cross_attention_block = cross_attention_block
|
167 |
+
self.feed_forward_block = feed_forward_block
|
168 |
+
self.residual_connections = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(3)])
|
169 |
+
|
170 |
+
def forward(self, x, encoder_output, src_mask, tgt_mask):
|
171 |
+
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask))
|
172 |
+
x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask))
|
173 |
+
x = self.residual_connections[2](x, self.feed_forward_block)
|
174 |
+
return x
|
175 |
+
|
176 |
+
class Decoder(nn.Module):
|
177 |
+
|
178 |
+
def __init__(self, features: int, layers: nn.ModuleList) -> None:
|
179 |
+
super().__init__()
|
180 |
+
self.layers = layers
|
181 |
+
self.norm = LayerNormalization(features)
|
182 |
+
|
183 |
+
def forward(self, x, encoder_output, src_mask, tgt_mask):
|
184 |
+
for layer in self.layers:
|
185 |
+
x = layer(x, encoder_output, src_mask, tgt_mask)
|
186 |
+
return self.norm(x)
|
187 |
+
|
188 |
+
class ProjectionLayer(nn.Module):
|
189 |
+
|
190 |
+
def __init__(self, d_model, vocab_size) -> None:
|
191 |
+
super().__init__()
|
192 |
+
self.proj = nn.Linear(d_model, vocab_size)
|
193 |
+
|
194 |
+
def forward(self, x) -> None:
|
195 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
|
196 |
+
return self.proj(x)
|
197 |
+
|
198 |
+
class Transformer(nn.Module):
|
199 |
+
|
200 |
+
def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: InputEmbeddings, tgt_embed: InputEmbeddings, src_pos: PositionalEncoding, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer) -> None:
|
201 |
+
super().__init__()
|
202 |
+
self.encoder = encoder
|
203 |
+
self.decoder = decoder
|
204 |
+
self.src_embed = src_embed
|
205 |
+
self.tgt_embed = tgt_embed
|
206 |
+
self.src_pos = src_pos
|
207 |
+
self.tgt_pos = tgt_pos
|
208 |
+
self.projection_layer = projection_layer
|
209 |
+
|
210 |
+
def encode(self, src, src_mask):
|
211 |
+
# (batch, seq_len, d_model)
|
212 |
+
src = self.src_embed(src)
|
213 |
+
src = self.src_pos(src)
|
214 |
+
return self.encoder(src, src_mask)
|
215 |
+
|
216 |
+
def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
|
217 |
+
# (batch, seq_len, d_model)
|
218 |
+
tgt = self.tgt_embed(tgt)
|
219 |
+
tgt = self.tgt_pos(tgt)
|
220 |
+
return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
|
221 |
+
|
222 |
+
def project(self, x):
|
223 |
+
# (batch, seq_len, vocab_size)
|
224 |
+
return self.projection_layer(x)
|
225 |
+
|
226 |
+
def build_transformer(src_vocab_size: int, tgt_vocab_size: int, src_seq_len: int, tgt_seq_len: int, d_model: int=512, N: int=6, h: int=8, dropout: float=0.1, d_ff: int=2048) -> Transformer:
|
227 |
+
# Create the embedding layers
|
228 |
+
src_embed = InputEmbeddings(d_model, src_vocab_size)
|
229 |
+
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)
|
230 |
+
|
231 |
+
# Create the positional encoding layers
|
232 |
+
src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
|
233 |
+
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
|
234 |
+
|
235 |
+
# Create the encoder blocks
|
236 |
+
encoder_blocks = []
|
237 |
+
for _ in range(N):
|
238 |
+
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
|
239 |
+
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
|
240 |
+
encoder_block = EncoderBlock(d_model, encoder_self_attention_block, feed_forward_block, dropout)
|
241 |
+
encoder_blocks.append(encoder_block)
|
242 |
+
|
243 |
+
# Create the decoder blocks
|
244 |
+
decoder_blocks = []
|
245 |
+
for _ in range(N):
|
246 |
+
decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
|
247 |
+
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
|
248 |
+
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
|
249 |
+
decoder_block = DecoderBlock(d_model, decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout)
|
250 |
+
decoder_blocks.append(decoder_block)
|
251 |
+
|
252 |
+
# Create the encoder and decoder
|
253 |
+
encoder = Encoder(d_model, nn.ModuleList(encoder_blocks))
|
254 |
+
decoder = Decoder(d_model, nn.ModuleList(decoder_blocks))
|
255 |
+
|
256 |
+
# Create the projection layer
|
257 |
+
projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
|
258 |
+
|
259 |
+
# Create the transformer
|
260 |
+
transformer = Transformer(encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer)
|
261 |
+
|
262 |
+
# Initialize the parameters
|
263 |
+
for p in transformer.parameters():
|
264 |
+
if p.dim() > 1:
|
265 |
+
nn.init.xavier_uniform_(p)
|
266 |
+
|
267 |
+
return transformer
|
predict.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel, utils
|
2 |
+
from bertviz import model_view
|
3 |
+
utils.logging.set_verbosity_error() # Suppress standard warnings
|
4 |
+
|
5 |
+
def get_predictions(input_text):
|
6 |
+
model_name = "microsoft/xtremedistil-l12-h384-uncased"
|
7 |
+
model = AutoModel.from_pretrained(model_name, output_attentions=True)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
inputs = tokenizer.encode(input_text, return_tensors='pt')
|
10 |
+
outputs = model(inputs)
|
11 |
+
attention = outputs[-1]
|
12 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
|
13 |
+
model_html = model_view(attention, tokens, html_action="return")
|
14 |
+
with open("static/model_view.html", 'w') as file:
|
15 |
+
file.write(model_html.data)
|
16 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Use python 3.9
|
2 |
+
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
torchaudio
|
6 |
+
torchtext
|
7 |
+
datasets
|
8 |
+
tokenizers
|
9 |
+
torchmetrics
|
10 |
+
tensorboard
|
11 |
+
altair
|
12 |
+
wandb
|
13 |
+
transformers
|
14 |
+
bertviz
|
15 |
+
IPython
|
16 |
+
streamlit
|
tokenizer_en.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_it.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import build_transformer
|
2 |
+
from dataset import BilingualDataset, causal_mask
|
3 |
+
from config import get_config, get_weights_file_path, latest_weights_file_path
|
4 |
+
|
5 |
+
# import torchtext.datasets as datasets
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
9 |
+
from torch.optim.lr_scheduler import LambdaLR
|
10 |
+
|
11 |
+
import warnings
|
12 |
+
from tqdm import tqdm
|
13 |
+
import os
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
# Huggingface datasets and tokenizers
|
17 |
+
from datasets import load_dataset
|
18 |
+
from tokenizers import Tokenizer
|
19 |
+
from tokenizers.models import WordLevel
|
20 |
+
from tokenizers.trainers import WordLevelTrainer
|
21 |
+
from tokenizers.pre_tokenizers import Whitespace
|
22 |
+
|
23 |
+
# import torchmetrics
|
24 |
+
# from torch.utils.tensorboard import SummaryWriter
|
25 |
+
|
26 |
+
def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
|
27 |
+
sos_idx = tokenizer_tgt.token_to_id('[SOS]')
|
28 |
+
eos_idx = tokenizer_tgt.token_to_id('[EOS]')
|
29 |
+
|
30 |
+
# Precompute the encoder output and reuse it for every step
|
31 |
+
encoder_output = model.encode(source, source_mask)
|
32 |
+
# Initialize the decoder input with the sos token
|
33 |
+
decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
|
34 |
+
while True:
|
35 |
+
if decoder_input.size(1) == max_len:
|
36 |
+
break
|
37 |
+
|
38 |
+
# build mask for target
|
39 |
+
decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
|
40 |
+
|
41 |
+
# calculate output
|
42 |
+
out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
|
43 |
+
|
44 |
+
# get next token
|
45 |
+
prob = model.project(out[:, -1])
|
46 |
+
_, next_word = torch.max(prob, dim=1)
|
47 |
+
decoder_input = torch.cat(
|
48 |
+
[decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
|
49 |
+
)
|
50 |
+
|
51 |
+
if next_word == eos_idx:
|
52 |
+
break
|
53 |
+
|
54 |
+
return decoder_input.squeeze(0)
|
55 |
+
|
56 |
+
|
57 |
+
def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step, writer=None, num_examples=2):
|
58 |
+
model.eval()
|
59 |
+
count = 0
|
60 |
+
|
61 |
+
source_texts = []
|
62 |
+
expected = []
|
63 |
+
predicted = []
|
64 |
+
|
65 |
+
try:
|
66 |
+
# get the console window width
|
67 |
+
with os.popen('stty size', 'r') as console:
|
68 |
+
_, console_width = console.read().split()
|
69 |
+
console_width = int(console_width)
|
70 |
+
except:
|
71 |
+
# If we can't get the console width, use 80 as default
|
72 |
+
console_width = 80
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
for batch in validation_ds:
|
76 |
+
count += 1
|
77 |
+
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
|
78 |
+
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
|
79 |
+
|
80 |
+
# check that the batch size is 1
|
81 |
+
assert encoder_input.size(
|
82 |
+
0) == 1, "Batch size must be 1 for validation"
|
83 |
+
|
84 |
+
model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
|
85 |
+
|
86 |
+
source_text = batch["src_text"][0]
|
87 |
+
target_text = batch["tgt_text"][0]
|
88 |
+
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
|
89 |
+
|
90 |
+
source_texts.append(source_text)
|
91 |
+
expected.append(target_text)
|
92 |
+
predicted.append(model_out_text)
|
93 |
+
|
94 |
+
# Print the source, target and model output
|
95 |
+
print_msg('-'*console_width)
|
96 |
+
print_msg(f"{f'SOURCE: ':>12}{source_text}")
|
97 |
+
print_msg(f"{f'TARGET: ':>12}{target_text}")
|
98 |
+
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
|
99 |
+
|
100 |
+
if count == num_examples:
|
101 |
+
print_msg('-'*console_width)
|
102 |
+
break
|
103 |
+
|
104 |
+
# if writer:
|
105 |
+
# # Evaluate the character error rate
|
106 |
+
# # Compute the char error rate
|
107 |
+
# metric = torchmetrics.CharErrorRate()
|
108 |
+
# cer = metric(predicted, expected)
|
109 |
+
# writer.add_scalar('validation cer', cer, global_step)
|
110 |
+
# writer.flush()
|
111 |
+
|
112 |
+
# # Compute the word error rate
|
113 |
+
# metric = torchmetrics.WordErrorRate()
|
114 |
+
# wer = metric(predicted, expected)
|
115 |
+
# writer.add_scalar('validation wer', wer, global_step)
|
116 |
+
# writer.flush()
|
117 |
+
|
118 |
+
# # Compute the BLEU metric
|
119 |
+
# metric = torchmetrics.BLEUScore()
|
120 |
+
# bleu = metric(predicted, expected)
|
121 |
+
# writer.add_scalar('validation BLEU', bleu, global_step)
|
122 |
+
# writer.flush()
|
123 |
+
|
124 |
+
def get_all_sentences(ds, lang):
|
125 |
+
for item in ds:
|
126 |
+
yield item['translation'][lang]
|
127 |
+
|
128 |
+
def get_or_build_tokenizer(config, ds, lang):
|
129 |
+
print(f"Checking for existing tokenizer for {lang}")
|
130 |
+
tokenizer_path = Path(config['tokenizer_file'].format(lang))
|
131 |
+
if not Path.exists(tokenizer_path):
|
132 |
+
print(f"Building tokenizer for {lang}")
|
133 |
+
# Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
|
134 |
+
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
|
135 |
+
tokenizer.pre_tokenizer = Whitespace()
|
136 |
+
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
|
137 |
+
print(f"Training tokenizer for {lang}")
|
138 |
+
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
|
139 |
+
print(f"Saving tokenizer for {lang}")
|
140 |
+
tokenizer.save(str(tokenizer_path))
|
141 |
+
else:
|
142 |
+
print(f"Found existing tokenizer for {lang}")
|
143 |
+
tokenizer = Tokenizer.from_file(str(tokenizer_path))
|
144 |
+
return tokenizer
|
145 |
+
|
146 |
+
def get_ds(config):
|
147 |
+
# It only has the train split, so we divide it overselves
|
148 |
+
print(f"Loading dataset {config['datasource']}")
|
149 |
+
ds_raw = load_dataset(f"{config['datasource']}", f"{config['lang_src']}-{config['lang_tgt']}", split='train')
|
150 |
+
|
151 |
+
# Build tokenizers
|
152 |
+
print(f"Building tokenizers for {config['lang_src']} and {config['lang_tgt']}")
|
153 |
+
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
|
154 |
+
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
|
155 |
+
|
156 |
+
# Keep 90% for training, 10% for validation
|
157 |
+
print("Splitting dataset into training and validation")
|
158 |
+
train_ds_size = int(0.9 * len(ds_raw))
|
159 |
+
val_ds_size = len(ds_raw) - train_ds_size
|
160 |
+
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
|
161 |
+
|
162 |
+
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
|
163 |
+
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
|
164 |
+
|
165 |
+
# Find the maximum length of each sentence in the source and target sentence
|
166 |
+
print("Finding the maximum length of the source and target sentences")
|
167 |
+
max_len_src = 0
|
168 |
+
max_len_tgt = 0
|
169 |
+
|
170 |
+
for item in ds_raw:
|
171 |
+
src_ids = tokenizer_src.encode(item['translation'][config['lang_src']]).ids
|
172 |
+
tgt_ids = tokenizer_tgt.encode(item['translation'][config['lang_tgt']]).ids
|
173 |
+
max_len_src = max(max_len_src, len(src_ids))
|
174 |
+
max_len_tgt = max(max_len_tgt, len(tgt_ids))
|
175 |
+
|
176 |
+
print(f'Max length of source sentence: {max_len_src}')
|
177 |
+
print(f'Max length of target sentence: {max_len_tgt}')
|
178 |
+
|
179 |
+
|
180 |
+
train_dataloader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True)
|
181 |
+
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
|
182 |
+
|
183 |
+
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
|
184 |
+
|
185 |
+
def get_model(config, vocab_src_len, vocab_tgt_len):
|
186 |
+
model = build_transformer(vocab_src_len, vocab_tgt_len, config["seq_len"], config['seq_len'], d_model=config['d_model'])
|
187 |
+
return model
|
188 |
+
|
189 |
+
def train_model(config):
|
190 |
+
# Define the device
|
191 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_mps or torch.backends.mps.is_available() else "cpu"
|
192 |
+
print("Using device:", device)
|
193 |
+
if (device == 'cuda'):
|
194 |
+
print(f"Device name: {torch.cuda.get_device_name(device.index)}")
|
195 |
+
print(f"Device memory: {torch.cuda.get_device_properties(device.index).total_memory / 1024 ** 3} GB")
|
196 |
+
elif (device == 'mps'):
|
197 |
+
print(f"Device name: <mps>")
|
198 |
+
else:
|
199 |
+
print("NOTE: If you have a GPU, consider using it for training.")
|
200 |
+
print(" On a Windows machine with NVidia GPU, check this video: https://www.youtube.com/watch?v=GMSjDTU8Zlc")
|
201 |
+
print(" On a Mac machine, run: pip3 install --pre torch torchvision torchaudio torchtext --index-url https://download.pytorch.org/whl/nightly/cpu")
|
202 |
+
device = torch.device(device)
|
203 |
+
|
204 |
+
# Make sure the weights folder exists
|
205 |
+
Path(f"{config['datasource']}_{config['model_folder']}").mkdir(parents=True, exist_ok=True)
|
206 |
+
|
207 |
+
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
|
208 |
+
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
|
209 |
+
# Tensorboard
|
210 |
+
# writer = SummaryWriter(config['experiment_name'])
|
211 |
+
|
212 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
|
213 |
+
|
214 |
+
# If the user specified a model to preload before training, load it
|
215 |
+
initial_epoch = 0
|
216 |
+
global_step = 0
|
217 |
+
preload = config['preload']
|
218 |
+
model_filename = latest_weights_file_path(config) if preload == 'latest' else get_weights_file_path(config, preload) if preload else None
|
219 |
+
if model_filename:
|
220 |
+
print(f'Preloading model {model_filename}')
|
221 |
+
state = torch.load(model_filename)
|
222 |
+
model.load_state_dict(state['model_state_dict'])
|
223 |
+
initial_epoch = state['epoch'] + 1
|
224 |
+
optimizer.load_state_dict(state['optimizer_state_dict'])
|
225 |
+
global_step = state['global_step']
|
226 |
+
else:
|
227 |
+
print('No model to preload, starting from scratch')
|
228 |
+
|
229 |
+
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
|
230 |
+
|
231 |
+
for epoch in range(initial_epoch, config['num_epochs']):
|
232 |
+
torch.cuda.empty_cache()
|
233 |
+
model.train()
|
234 |
+
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
|
235 |
+
for batch in batch_iterator:
|
236 |
+
|
237 |
+
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
|
238 |
+
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
|
239 |
+
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
|
240 |
+
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
|
241 |
+
|
242 |
+
# Run the tensors through the encoder, decoder and the projection layer
|
243 |
+
encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
|
244 |
+
decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (B, seq_len, d_model)
|
245 |
+
proj_output = model.project(decoder_output) # (B, seq_len, vocab_size)
|
246 |
+
|
247 |
+
# Compare the output with the label
|
248 |
+
label = batch['label'].to(device) # (B, seq_len)
|
249 |
+
|
250 |
+
# Compute the loss using a simple cross entropy
|
251 |
+
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
|
252 |
+
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
|
253 |
+
|
254 |
+
# Log the loss
|
255 |
+
# writer.add_scalar('train loss', loss.item(), global_step)
|
256 |
+
# writer.flush()
|
257 |
+
|
258 |
+
# Backpropagate the loss
|
259 |
+
loss.backward()
|
260 |
+
|
261 |
+
# Update the weights
|
262 |
+
optimizer.step()
|
263 |
+
optimizer.zero_grad(set_to_none=True)
|
264 |
+
|
265 |
+
global_step += 1
|
266 |
+
|
267 |
+
# Run validation at the end of every epoch
|
268 |
+
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer=None)
|
269 |
+
|
270 |
+
# Save the model at the end of every epoch
|
271 |
+
model_filename = get_weights_file_path(config, f"{epoch:02d}")
|
272 |
+
torch.save({
|
273 |
+
'epoch': epoch,
|
274 |
+
'model_state_dict': model.state_dict(),
|
275 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
276 |
+
'global_step': global_step
|
277 |
+
}, model_filename)
|
278 |
+
|
279 |
+
|
280 |
+
if __name__ == '__main__':
|
281 |
+
warnings.filterwarnings("ignore")
|
282 |
+
config = get_config()
|
283 |
+
train_model(config)
|
translate.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from config import get_config, latest_weights_file_path
|
3 |
+
from model import build_transformer
|
4 |
+
from tokenizers import Tokenizer
|
5 |
+
from datasets import load_dataset
|
6 |
+
from dataset import BilingualDataset
|
7 |
+
import torch
|
8 |
+
import sys
|
9 |
+
|
10 |
+
def translate(sentence: str):
|
11 |
+
# Define the device, tokenizers, and model
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
print("Using device:", device)
|
14 |
+
config = get_config()
|
15 |
+
tokenizer_src = Tokenizer.from_file(str(Path(config['tokenizer_file'].format(config['lang_src']))))
|
16 |
+
tokenizer_tgt = Tokenizer.from_file(str(Path(config['tokenizer_file'].format(config['lang_tgt']))))
|
17 |
+
model = build_transformer(tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size(), config["seq_len"], config['seq_len'], d_model=config['d_model']).to(device)
|
18 |
+
|
19 |
+
# Load the pretrained weights
|
20 |
+
model_filename = latest_weights_file_path(config)
|
21 |
+
state = torch.load(model_filename)
|
22 |
+
model.load_state_dict(state['model_state_dict'])
|
23 |
+
|
24 |
+
# if the sentence is a number use it as an index to the test set
|
25 |
+
label = ""
|
26 |
+
if type(sentence) == int or sentence.isdigit():
|
27 |
+
id = int(sentence)
|
28 |
+
ds = load_dataset(f"{config['datasource']}", f"{config['lang_src']}-{config['lang_tgt']}", split='all')
|
29 |
+
ds = BilingualDataset(ds, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
|
30 |
+
sentence = ds[id]['src_text']
|
31 |
+
label = ds[id]["tgt_text"]
|
32 |
+
seq_len = config['seq_len']
|
33 |
+
|
34 |
+
# translate the sentence
|
35 |
+
model.eval()
|
36 |
+
with torch.no_grad():
|
37 |
+
# Precompute the encoder output and reuse it for every generation step
|
38 |
+
source = tokenizer_src.encode(sentence)
|
39 |
+
source = torch.cat([
|
40 |
+
torch.tensor([tokenizer_src.token_to_id('[SOS]')], dtype=torch.int64),
|
41 |
+
torch.tensor(source.ids, dtype=torch.int64),
|
42 |
+
torch.tensor([tokenizer_src.token_to_id('[EOS]')], dtype=torch.int64),
|
43 |
+
torch.tensor([tokenizer_src.token_to_id('[PAD]')] * (seq_len - len(source.ids) - 2), dtype=torch.int64)
|
44 |
+
], dim=0).to(device)
|
45 |
+
source_mask = (source != tokenizer_src.token_to_id('[PAD]')).unsqueeze(0).unsqueeze(0).int().to(device)
|
46 |
+
encoder_output = model.encode(source, source_mask)
|
47 |
+
|
48 |
+
# Initialize the decoder input with the sos token
|
49 |
+
decoder_input = torch.empty(1, 1).fill_(tokenizer_tgt.token_to_id('[SOS]')).type_as(source).to(device)
|
50 |
+
|
51 |
+
# Print the source sentence and target start prompt
|
52 |
+
if label != "": print(f"{f'ID: ':>12}{id}")
|
53 |
+
print(f"{f'SOURCE: ':>12}{sentence}")
|
54 |
+
if label != "": print(f"{f'TARGET: ':>12}{label}")
|
55 |
+
print(f"{f'PREDICTED: ':>12}", end='')
|
56 |
+
|
57 |
+
# Generate the translation word by word
|
58 |
+
while decoder_input.size(1) < seq_len:
|
59 |
+
# build mask for target and calculate output
|
60 |
+
decoder_mask = torch.triu(torch.ones((1, decoder_input.size(1), decoder_input.size(1))), diagonal=1).type(torch.int).type_as(source_mask).to(device)
|
61 |
+
out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
|
62 |
+
|
63 |
+
# project next token
|
64 |
+
prob = model.project(out[:, -1])
|
65 |
+
_, next_word = torch.max(prob, dim=1)
|
66 |
+
decoder_input = torch.cat([decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1)
|
67 |
+
|
68 |
+
# print the translated word
|
69 |
+
print(f"{tokenizer_tgt.decode([next_word.item()])}", end=' ')
|
70 |
+
|
71 |
+
# break if we predict the end of sentence token
|
72 |
+
if next_word == tokenizer_tgt.token_to_id('[EOS]'):
|
73 |
+
break
|
74 |
+
|
75 |
+
# convert ids to tokens
|
76 |
+
return tokenizer_tgt.decode(decoder_input[0].tolist())
|
77 |
+
|
78 |
+
#read sentence from argument
|
79 |
+
translate(sys.argv[1] if len(sys.argv) > 1 else "I am not a very good a student.")
|