Spaces:
Running
Running
File size: 8,293 Bytes
1646c30 1ef0d2e 1646c30 7ccf7c7 1646c30 1ef0d2e 1646c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import re
import torch
import torchaudio
import gradio as gr
import numpy as np
import tempfile
from einops import rearrange
from ema_pytorch import EMA
from vocos import Vocos
from pydub import AudioSegment
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
get_tokenizer,
convert_char_to_pinyin,
save_spectrogram,
)
from transformers import pipeline
import spaces
import librosa
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
# --------------------- Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = 'euler'
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27 # None or float (duration in seconds)
fix_duration = None
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(
**model_cfg,
text_num_embeds=vocab_size,
mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
ema_model = EMA(model, include_online_model=False).to(device)
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
ema_model.copy_params_from_ema_to_model()
return ema_model, model
# load models
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
F5TTS_ema_model, F5TTS_base_model = load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
E2TTS_ema_model, E2TTS_base_model = load_model("E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
@spaces.GPU
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence):
print(gen_text)
if len(gen_text) > 200:
raise gr.Error("Please keep your text under 200 chars.")
gr.Info("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
audio_duration = len(aseg)
if audio_duration > 15000:
gr.Warning("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
if exp_name == "F5-TTS":
ema_model = F5TTS_ema_model
base_model = F5TTS_base_model
elif exp_name == "E2-TTS":
ema_model = E2TTS_ema_model
base_model = E2TTS_base_model
if not ref_text.strip():
gr.Info("No reference text provided, transcribing reference audio...")
ref_text = outputs = pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)['text'].strip()
gr.Info("Finished transcription")
else:
gr.Info("Using custom reference text...")
audio, sr = torchaudio.load(ref_audio)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
# Prepare the text
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
ref_audio_len = audio.shape[-1] // hop_length
# if fix_duration is not None:
# duration = int(fix_duration * target_sample_rate / hop_length)
# else:
zh_pause_punc = r"。,、;:?!"
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
gr.Info(f"Generating audio using {exp_name}")
with torch.inference_mode():
generated, _ = base_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
gr.Info("Running vocoder")
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
if remove_silence:
gr.Info("Removing audio silences... This may take a moment")
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
non_silent_wave = np.array([])
for interval in non_silent_intervals:
start, end = interval
non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
generated_wave = non_silent_wave
# spectogram
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(generated_mel_spec[0].cpu().numpy(), spectrogram_path)
return (target_sample_rate, generated_wave), spectrogram_path
with gr.Blocks() as app:
gr.Markdown("""
# E2/F5 TTS
This is an unofficial E2/F5 TTS demo. This demo supports the following TTS models:
* [E2-TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
This demo is based on the [F5-TTS](https://github.com/SWivid/F5-TTS) codebase, which is based on an [unofficial E2-TTS implementation](https://github.com/lucidrains/e2-tts-pytorch).
The checkpoints support English and Chinese.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. If you're still running into issues, please open a [community Discussion](https://huggingface.co/spaces/mrfakename/E2-F5-TTS/discussions).
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
""")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate (max 200 chars.)", lines=4)
model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(label="Reference Text", info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", lines=2)
remove_silence = gr.Checkbox(label="Remove Silences", info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", value=True)
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
generate_btn.click(infer, inputs=[ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence], outputs=[audio_output, spectrogram_output])
gr.Markdown("Unofficial demo by [mrfakename](https://x.com/realmrfakename)")
app.queue().launch() |