Spaces:
Running
Running
File size: 4,160 Bytes
1646c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
import torch
from torch import nn
from einops import repeat
from x_transformers.x_transformers import RotaryEmbedding
from model.modules import (
TimestepEmbedding,
ConvPositionEmbedding,
MMDiTBlock,
AdaLayerNormZero_Final,
precompute_freqs_cis, get_pos_embed_indices,
)
# text embedding
class TextEmbedding(nn.Module):
def __init__(self, out_dim, text_num_embeds):
super().__init__()
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
self.precompute_max_pos = 1024
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
def forward(self, text: int['b nt'], drop_text = False) -> int['b nt d']:
text = text + 1
if drop_text:
text = torch.zeros_like(text)
text = self.text_embed(text)
# sinus pos emb
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
batch_text_len = text.shape[1]
pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos)
text_pos_embed = self.freqs_cis[pos_idx]
text = text + text_pos_embed
return text
# noised input & masked cond audio embedding
class AudioEmbedding(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.linear = nn.Linear(2 * in_dim, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
def forward(self, x: float['b n d'], cond: float['b n d'], drop_audio_cond = False):
if drop_audio_cond:
cond = torch.zeros_like(cond)
x = torch.cat((x, cond), dim = -1)
x = self.linear(x)
x = self.conv_pos_embed(x) + x
return x
# Transformer backbone using MM-DiT blocks
class MMDiT(nn.Module):
def __init__(self, *,
dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4,
text_num_embeds = 256, mel_dim = 100,
):
super().__init__()
self.time_embed = TimestepEmbedding(dim)
self.text_embed = TextEmbedding(dim, text_num_embeds)
self.audio_embed = AudioEmbedding(mel_dim, dim)
self.rotary_embed = RotaryEmbedding(dim_head)
self.dim = dim
self.depth = depth
self.transformer_blocks = nn.ModuleList(
[
MMDiTBlock(
dim = dim,
heads = heads,
dim_head = dim_head,
dropout = dropout,
ff_mult = ff_mult,
context_pre_only = i == depth - 1,
)
for i in range(depth)
]
)
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim)
def forward(
self,
x: float['b n d'], # nosied input audio
cond: float['b n d'], # masked cond audio
text: int['b nt'], # text
time: float['b'] | float[''], # time step
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool['b n'] | None = None,
):
batch = x.shape[0]
if time.ndim == 0:
time = repeat(time, ' -> b', b = batch)
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
t = self.time_embed(time)
c = self.text_embed(text, drop_text = drop_text)
x = self.audio_embed(x, cond, drop_audio_cond = drop_audio_cond)
seq_len = x.shape[1]
text_len = text.shape[1]
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
rope_text = self.rotary_embed.forward_from_seq_len(text_len)
for block in self.transformer_blocks:
c, x = block(x, c, t, mask = mask, rope = rope_audio, c_rope = rope_text)
x = self.norm_out(x, t)
output = self.proj_out(x)
return output
|