import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_dir = "Den4ikAI/ebany_researcher"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
tokenizer.add_special_tokens({'bos_token': '', 'eos_token': '', 'pad_token': ''})
model = AutoModelForCausalLM.from_pretrained(model_dir)
model.to(device)
model.eval()
def generate(prompt):
encoded_prompt = tokenizer.encode(prompt, return_tensors="pt").to(device)
out = model.generate(encoded_prompt, max_length=50, do_sample=True, top_k=50, top_p=0.95, temperature=1.0,
num_return_sequences=1)
for i, tokens in enumerate(out.cpu().tolist(), start=1):
tokens = tokens[encoded_prompt.shape[1]:]
text = tokenizer.decode(tokens)
return text