import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_dir = "Den4ikAI/ebany_researcher" tokenizer = AutoTokenizer.from_pretrained(model_dir) tokenizer.add_special_tokens({'bos_token': '', 'eos_token': '', 'pad_token': ''}) model = AutoModelForCausalLM.from_pretrained(model_dir) model.to(device) model.eval() def generate(prompt): encoded_prompt = tokenizer.encode(prompt, return_tensors="pt").to(device) out = model.generate(encoded_prompt, max_length=50, do_sample=True, top_k=50, top_p=0.95, temperature=1.0, num_return_sequences=1) for i, tokens in enumerate(out.cpu().tolist(), start=1): tokens = tokens[encoded_prompt.shape[1]:] text = tokenizer.decode(tokens) return text