QGen / option_generation.py
DevBM's picture
Upload files for modules/functions (#5)
f7842f6 verified
raw
history blame
5.67 kB
import nltk
import random
import asyncio
nltk.download('wordnet')
from nltk.corpus import wordnet
from sentence_transformers import util
from load_models import load_nlp_models, load_llama, load_qa_models
from utils import QuestionGenerationError
nlp, s2v = load_nlp_models()
llm = load_llama()
similarity_model, spell = load_qa_models()
context_model = similarity_model
def get_similar_words_sense2vec(word, n=3):
# Try to find the word with its most likely part-of-speech
word_with_pos = word + "|NOUN"
if word_with_pos in s2v:
similar_words = s2v.most_similar(word_with_pos, n=n)
return [word.split("|")[0] for word, _ in similar_words]
# If not found, try without POS
if word in s2v:
similar_words = s2v.most_similar(word, n=n)
return [word.split("|")[0] for word, _ in similar_words]
return []
def get_synonyms(word, n=3):
synonyms = []
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
if lemma.name() != word and lemma.name() not in synonyms:
synonyms.append(lemma.name())
if len(synonyms) == n:
return synonyms
return synonyms
def gen_options(answer,context,question):
prompt=f'''Given the following context, question, and correct answer,
generate {4} incorrect but plausible answer options. The options should be:
1. Contextually related to the given context
2. Grammatically consistent with the question
3. Different from the correct answer
4. Not explicitly mentioned in the given context
Context: {context}
Question: {question}
Correct Answer: {answer}
Provide the options in a semi colon-separated list. Output must contain only the options and nothing else.
'''
options= [answer]
response = llm.invoke(prompt, stop=['<|eot_id|>'])
incorrect_options = [option.strip() for option in response.split(';')]
options.extend(incorrect_options)
random.shuffle(options)
print(options)
return options
# print(response)
def generate_options(answer, context, n=3):
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = context_model.encode(context)
answer_embedding = context_model.encode(answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = get_similar_words_sense2vec(answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = get_synonyms(answer, n - len(options) + 1)
options.extend(synonyms)
# If we still don't have enough options, extract other entities from the context
if len(options) < n + 1:
doc = nlp(context)
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
options.extend(entities[:n - len(options) + 1])
# If we still need more options, add some random words from the context
if len(options) < n + 1:
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
print(f"\n\nAll Possible Options: {options}\n\n")
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
async def generate_options_async(answer, context, n=3):
try:
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = await asyncio.to_thread(context_model.encode, context)
answer_embedding = await asyncio.to_thread(context_model.encode, answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(await asyncio.to_thread(context_model.encode, word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = await asyncio.to_thread(get_similar_words_sense2vec, answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = await asyncio.to_thread(get_synonyms, answer, n - len(options) + 1)
options.extend(synonyms)
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
except Exception as e:
raise QuestionGenerationError(f"Error in generating options: {str(e)}")