QGen / app.py
DevBM's picture
Use function for extracting text from any document(doc,docx,text,ppt,pptx,latex,html,pdf) instead of just pdf
61e6e50 verified
raw
history blame
9.29 kB
import nltk
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
nltk.download('wordnet')
import streamlit as st
st.set_page_config(
page_icon='cyclone',
page_title="Question Generator",
initial_sidebar_state="auto",
menu_items={
"About" : "Hi this our project."
}
)
from text_processing import clean_text, get_text_from_document
from question_generation import generate_questions_async
from visualization import display_word_cloud
from data_export import export_to_csv, export_to_pdf
from feedback import collect_feedback, analyze_feedback, export_feedback_data
from utils import get_session_id, initialize_state, get_state, set_state, display_info, QuestionGenerationError, entity_linking
import asyncio
import time
import pandas as pd
from data_export import send_email_with_attachment
st.set_option('deprecation.showPyplotGlobalUse',False)
with st.sidebar:
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
if select_model == "T5-large":
modelname = "DevBM/t5-large-squad"
elif select_model == "T5-small":
modelname = "AneriThakkar/flan-t5-small-finetuned"
def main():
st.title(":blue[Question Generator System]")
session_id = get_session_id()
state = initialize_state(session_id)
if 'feedback_data' not in st.session_state:
st.session_state.feedback_data = []
with st.sidebar:
show_info = st.toggle('Show Info',False)
if show_info:
display_info()
st.subheader("Customization Options")
# Customization options
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
with st.expander("Choose the Additional Elements to show"):
show_context = st.checkbox("Context",False)
show_answer = st.checkbox("Answer",True)
show_options = st.checkbox("Options",True)
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
show_qa_scores = st.checkbox("QA Score",True)
show_blank_question = st.checkbox("Fill in the Blank Questions",True)
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
col1, col2 = st.columns(2)
with col1:
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
with col2:
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
text = None
if input_type == "Text Input":
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.", help="Enter or paste your text here")
elif input_type == "Upload Document":
file = st.file_uploader("Upload Document File", type=['pdf', 'docx', 'doc', 'pptx', 'ppt', 'html', 'tex', 'txt'])
if file is not None:
try:
text = get_text_from_document(file)
except Exception as e:
st.error(f"Error reading file: {str(e)}")
text = None
if text:
text = clean_text(text)
with st.expander("Show text"):
st.write(text)
# st.text(text)
generate_questions_button = st.button("Generate Questions",help="This is the generate questions button")
# st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
if generate_questions_button and text:
start_time = time.time()
with st.spinner("Generating questions..."):
try:
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords,modelname))
if not state['generated_questions']:
st.warning("No questions were generated. The text might be too short or lack suitable content.")
else:
st.success(f"Successfully generated {len(state['generated_questions'])} questions!")
except QuestionGenerationError as e:
st.error(f"An error occurred during question generation: {str(e)}")
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n")
data = get_state(session_id)
print(data)
end_time = time.time()
print(f"Time Taken to generate: {end_time-start_time}")
set_state(session_id, 'generated_questions', state['generated_questions'])
# sort question based on their quality score
state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
# Display generated questions
if state['generated_questions']:
st.header("Generated Questions:",divider='blue')
for i, q in enumerate(state['generated_questions']):
st.subheader(body=f":orange[Q{i+1}:] {q['question']}")
if show_blank_question is True:
st.write(f"**Fill in the Blank Question:** {q['blank_question']}")
if show_context is True:
st.write(f"**Context:** {q['context']}")
if show_answer is True:
st.write(f"**Answer:** {q['answer']}")
if show_options is True:
st.write(f"**Options:**")
for j, option in enumerate(q['options']):
st.write(f"{chr(65+j)}. {option}")
if show_entity_link is True:
linked_entity = entity_linking(q['answer'])
if linked_entity:
st.write(f"**Entity Link:** {linked_entity}")
if show_qa_scores is True:
m1,m2,m3,m4 = st.columns([1.7,1,1,1])
m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}")
m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}")
m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}")
m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}")
# q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
if enable_feedback_mode:
collect_feedback(
i,
question = q['question'],
answer = q['answer'],
context = q['context'],
options = q['options'],
)
st.write("---")
# Export buttons
# if st.session_state.generated_questions:
if state['generated_questions']:
with st.sidebar:
# Adding error handling while exporting the files
# ---------------------------------------------------------------------
try:
csv_data = export_to_csv(state['generated_questions'])
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
pdf_data = export_to_pdf(state['generated_questions'])
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
except Exception as e:
st.error(f"Error exporting CSV: {e}")
with st.expander("View Visualizations"):
questions = [tpl['question'] for tpl in state['generated_questions']]
overall_scores = [tpl['overall_score'] for tpl in state['generated_questions']]
st.subheader('WordCloud of Questions',divider='rainbow')
display_word_cloud(questions)
st.subheader('Overall Scores',divider='violet')
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
st.line_chart(overall_scores)
# View Feedback Statistics
with st.expander("View Feedback Statistics"):
analyze_feedback()
if st.button("Export Feedback"):
feedback_data = export_feedback_data()
pswd = st.secrets['EMAIL_PASSWORD']
send_email_with_attachment(
email_subject='feedback from QGen',
email_body='Please find the attached feedback JSON file.',
recipient_emails=['apjc01unique@gmail.com', 'channingfisher7@gmail.com'],
sender_email='apjc01unique@gmail.com',
sender_password=pswd,
attachment=feedback_data
)
print("********************************************************************************")
if __name__ == '__main__':
try:
main()
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
st.error("Please try refreshing the page. If the problem persists, contact support.")