QGen / keyword_extraction.py
DevBM's picture
Remove enhanced_ner_entities while returning the keywords
c9ff03b verified
raw
history blame
6.2 kB
from nltk.corpus import stopwords
from rake_nltk import Rake
from sklearn.feature_extraction.text import TfidfVectorizer
import spacy
from transformers import pipeline
from gliner import GLiNER
from load_models import load_nlp_models
nlp, s2v = load_nlp_models()
def filter_keywords(extracted_keywords):
unwanted_keywords =[
# Common punctuation marks
'.', ',', '!', '?', ':', ';', '-', '_', '(', ')', '[', ']', '{', '}',
'/', '\\', '|', '@', '#', '$', '%', '^', '&', '*', '+', '=', '<', '>',
'`', '~', '"', "'",
# Common contractions (if not already removed as stopwords)
"n't", "'s", "'m", "'re", "'ll", "'ve", "'d",
# Common abbreviations
'etc', 'eg', 'ie', 'ex', 'vs', 'viz',
'tbd', 'tba', # To be determined/announced
'na', 'n/a', # Not applicable
# Single characters
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
# HTML-related tags (if the text contains any HTML content)
'<html>', '</html>', '<body>', '</body>', '<head>', '</head>', '<div>', '</div>', '<p>', '</p>', '<br>', '<hr>', '<h1>', '</h1>', '<h2>', '</h2>', '<h3>', '</h3>',
# Random technical or common abbreviations that aren't meaningful keywords
'etc', 'e.g', 'i.e', 'vs', 'ex', 'vol', 'sec', 'pg', 'id', 'ref', 'eq',
# Miscellaneous tokens
'www', 'com', 'http', 'https', 'ftp', 'pdf', 'doc', 'img', 'gif', 'jpeg', 'jpg', 'png', 'mp4', 'mp3', 'org', 'net', 'edu',
'untitled', 'noname', 'unknown', 'undefined',
# Single letters commonly used in bullet points or references
'i', 'ii', 'iii', 'iv', 'v', 'vi', 'vii', 'viii', 'ix', 'x', 'xi', 'xii',
# Common file extensions (if filenames are included in the text)
'.jpg', '.png', '.pdf', '.doc', '.docx', '.ppt', '.pptx', '.xls', '.xlsx', '.csv', '.txt', '.zip', '.tar', '.gz', '.exe', '.bat', '.sh', '.py', '.cpp', '.java',
# Other tokens related to formatting or structure
'chapter', 'section', 'figure', 'table', 'appendix',
# Miscellaneous general noise terms
'note', 'item', 'items', 'number', 'numbers', 'figure', 'case', 'cases', 'example', 'examples', 'type', 'types', 'section', 'part', 'parts'
]
# Convert both lists to sets for efficient lookup
extracted_set = set(extracted_keywords)
unwanted_set = set(unwanted_keywords)
# Remove unwanted keywords
filtered_keywords = extracted_set - unwanted_set
# Convert back to a list and sort (optional)
return sorted(list(filtered_keywords))
def remove_stopwords(keywords):
stop_words = set(stopwords.words('english'))
modified_keywords = [''.join(keyword.split()) for keyword in keywords]
filtered_keywords = [keyword for keyword in modified_keywords if keyword.lower() not in stop_words]
original_keywords = []
for keyword in filtered_keywords:
for original_keyword in keywords:
if ''.join(original_keyword.split()).lower() == keyword.lower():
original_keywords.append(original_keyword)
break
return original_keywords
# def enhanced_ner(text):
# nlp = spacy.load("en_core_web_trf")
# ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
# doc = nlp(text)
# spacy_entities = set((ent.text, ent.label_) for ent in doc.ents)
# hf_entities = set((ent['word'], ent['entity']) for ent in ner_pipeline(text))
# combined_entities = spacy_entities.union(hf_entities)
# keywords = [entity[0] for entity in combined_entities]
# return list(keywords)
def extract_keywords(text, extract_all):
try:
text = text.lower()
# enhanced_ner_entities = enhanced_ner(text)
# print("Enhanced ner entities: ",enhanced_ner_entities)
# enhanced_ner_entities = remove_stopwords(enhanced_ner_entities)
# enhanced_ner_entities = filter_keywords(enhanced_ner_entities)
# print("Enhanced ner entities after applying filter and stopwords removal: ",enhanced_ner_entities)
gliner_model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5")
labels = ["person", "organization", "phone number", "address", "email", "date of birth",
"mobile phone number", "medication", "ip address", "email address",
"landline phone number", "blood type", "digital signature", "postal code",
"date"]
entities = gliner_model.predict_entities(text, labels, threshold=0.5)
gliner_keywords = set(remove_stopwords([ent["text"] for ent in entities]))
print(f"Gliner keywords:{gliner_keywords}")
# if extract_all is False:
# return list(gliner_keywords)
doc = nlp(text)
spacy_keywords = set(remove_stopwords([ent.text for ent in doc.ents]))
print(f"\n\nSpacy Entities: {spacy_keywords} \n\n")
if extract_all is False:
# combined_keywords_without_all = list(spacy_keywords.union(gliner_keywords).union(enhanced_ner_entities))
combined_keywords_without_all = list(spacy_keywords.union(gliner_keywords))
filtered_results = filter_keywords(combined_keywords_without_all)
print("Keywords returned: ",filtered_results)
return list(filtered_results)
rake = Rake()
rake.extract_keywords_from_text(text)
rake_keywords = set(remove_stopwords(rake.get_ranked_phrases()))
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform([text])
tfidf_keywords = set(remove_stopwords(vectorizer.get_feature_names_out()))
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
combined_keywords = list(rake_keywords.union(spacy_keywords).union(tfidf_keywords).union(gliner_keywords))
filtered_results = filter_keywords(combined_keywords)
print("Keywords returned: ",filtered_results)
return list(filtered_results)
except Exception as e:
raise Exception(f"Error in keyword extraction: {str(e)}")