Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -19,21 +19,25 @@ from sense2vec import Sense2Vec
|
|
19 |
import sense2vec
|
20 |
from wordcloud import WordCloud
|
21 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
print("***************************************************************")
|
23 |
|
24 |
st.set_page_config(
|
25 |
page_title="Question Generator",
|
26 |
initial_sidebar_state="collapsed",
|
27 |
)
|
28 |
-
# Load spaCy model
|
29 |
-
nlp = spacy.load("en_core_web_md")
|
30 |
-
# s2v = Sense2Vec.from_disk(self=Sense2Vec,path='s2v_old')
|
31 |
|
32 |
-
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
|
33 |
# Initialize Wikipedia API with a user agent
|
34 |
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
|
35 |
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
36 |
|
|
|
37 |
@st.cache_resource
|
38 |
def load_model():
|
39 |
model_name = "DevBM/t5-large-squad"
|
@@ -41,6 +45,46 @@ def load_model():
|
|
41 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
42 |
return model, tokenizer
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Function to extract keywords using combined techniques
|
45 |
def extract_keywords(text, extract_all):
|
46 |
doc = nlp(text)
|
@@ -162,8 +206,10 @@ def generate_question(context, answer, num_beams):
|
|
162 |
|
163 |
# Function to export questions to CSV
|
164 |
def export_to_csv(data):
|
165 |
-
df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
|
166 |
-
|
|
|
|
|
167 |
return csv
|
168 |
|
169 |
# Function to export questions to PDF
|
@@ -172,14 +218,15 @@ def export_to_pdf(data):
|
|
172 |
pdf.add_page()
|
173 |
pdf.set_font("Arial", size=12)
|
174 |
|
175 |
-
for
|
176 |
-
pdf.multi_cell(0, 10, f"Context: {context}")
|
177 |
-
pdf.multi_cell(0, 10, f"
|
178 |
-
pdf.multi_cell(0, 10, f"
|
|
|
|
|
179 |
pdf.ln(10)
|
180 |
|
181 |
-
|
182 |
-
return pdf.output(name='questions.pdf',dest='S').encode('latin1')
|
183 |
|
184 |
def display_word_cloud(generated_questions):
|
185 |
word_frequency = {}
|
@@ -194,74 +241,154 @@ def display_word_cloud(generated_questions):
|
|
194 |
plt.axis('off')
|
195 |
st.pyplot()
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
|
222 |
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
223 |
-
|
224 |
-
st.subheader("Generated Questions:",divider='blue')
|
225 |
-
data = []
|
226 |
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
|
227 |
if i >= num_questions:
|
228 |
break
|
229 |
-
linked_entity = entity_linking(keyword)
|
230 |
question = generate_question(context, keyword, num_beams=num_beams)
|
231 |
-
options = generate_options(keyword,
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
if show_context is True:
|
235 |
-
st.write(f"**Context:** {context}")
|
236 |
if show_answer is True:
|
237 |
-
st.write(f"**Answer:** {
|
238 |
if show_options is True:
|
239 |
st.write(f"**Options:**")
|
240 |
-
for j, option in enumerate(options):
|
241 |
st.write(f"{chr(65+j)}. {option}")
|
242 |
if show_entity_link is True:
|
|
|
243 |
if linked_entity:
|
244 |
st.write(f"**Entity Link:** {linked_entity}")
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
# Add the data to session state
|
249 |
-
st.session_state.data = data
|
250 |
-
# display_word_cloud()
|
251 |
-
print(data)
|
252 |
# Export buttons
|
253 |
-
if st.session_state.
|
254 |
with st.sidebar:
|
255 |
-
st.
|
256 |
-
csv_data =
|
257 |
-
st.download_button(label="CSV Format", data=csv_data, file_name='questions.csv', mime='text/csv')
|
258 |
|
259 |
-
pdf_data = export_to_pdf(
|
260 |
-
st.download_button(label="PDF
|
261 |
-
if st.session_state.data is not None:
|
262 |
-
st.markdown("You can download the data from the sidebar.")
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
import sense2vec
|
20 |
from wordcloud import WordCloud
|
21 |
import matplotlib.pyplot as plt
|
22 |
+
import json
|
23 |
+
import os
|
24 |
+
from sentence_transformers import SentenceTransformer, util
|
25 |
+
import textstat
|
26 |
+
import language_tool_python
|
27 |
+
from transformers import pipeline
|
28 |
+
|
29 |
print("***************************************************************")
|
30 |
|
31 |
st.set_page_config(
|
32 |
page_title="Question Generator",
|
33 |
initial_sidebar_state="collapsed",
|
34 |
)
|
|
|
|
|
|
|
35 |
|
|
|
36 |
# Initialize Wikipedia API with a user agent
|
37 |
user_agent = 'QGen/1.0 (channingfisher7@gmail.com)'
|
38 |
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
39 |
|
40 |
+
|
41 |
@st.cache_resource
|
42 |
def load_model():
|
43 |
model_name = "DevBM/t5-large-squad"
|
|
|
45 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
46 |
return model, tokenizer
|
47 |
|
48 |
+
# Load Spacy Model
|
49 |
+
@st.cache_resource
|
50 |
+
def load_nlp_models():
|
51 |
+
nlp = spacy.load("en_core_web_md")
|
52 |
+
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
|
53 |
+
return nlp, s2v
|
54 |
+
|
55 |
+
# Load Quality Assurance Models
|
56 |
+
@st.cache_resource
|
57 |
+
def load_qa_models():
|
58 |
+
# Initialize BERT model for sentence similarity
|
59 |
+
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
|
60 |
+
|
61 |
+
# Initialize language tool for grammar checking
|
62 |
+
language_tool = language_tool_python.LanguageTool('en-US')
|
63 |
+
|
64 |
+
return similarity_model, language_tool
|
65 |
+
|
66 |
+
nlp, s2v = load_nlp_models()
|
67 |
+
model, tokenizer = load_model()
|
68 |
+
similarity_model, language_tool = load_qa_models()
|
69 |
+
|
70 |
+
def save_feedback(question, answer,rating):
|
71 |
+
feedback_file = 'question_feedback.json'
|
72 |
+
if os.path.exists(feedback_file):
|
73 |
+
with open(feedback_file, 'r') as f:
|
74 |
+
feedback_data = json.load(f)
|
75 |
+
else:
|
76 |
+
feedback_data = []
|
77 |
+
tpl = {
|
78 |
+
'question' : question,
|
79 |
+
'answer' : answer,
|
80 |
+
'rating' : rating,
|
81 |
+
}
|
82 |
+
# feedback_data[question] = rating
|
83 |
+
feedback_data.append(tpl)
|
84 |
+
|
85 |
+
with open(feedback_file, 'w') as f:
|
86 |
+
json.dump(feedback_data, f)
|
87 |
+
|
88 |
# Function to extract keywords using combined techniques
|
89 |
def extract_keywords(text, extract_all):
|
90 |
doc = nlp(text)
|
|
|
206 |
|
207 |
# Function to export questions to CSV
|
208 |
def export_to_csv(data):
|
209 |
+
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
|
210 |
+
df = pd.DataFrame(data)
|
211 |
+
# csv = df.to_csv(index=False,encoding='utf-8')
|
212 |
+
csv = df.to_csv(index=False)
|
213 |
return csv
|
214 |
|
215 |
# Function to export questions to PDF
|
|
|
218 |
pdf.add_page()
|
219 |
pdf.set_font("Arial", size=12)
|
220 |
|
221 |
+
for item in data:
|
222 |
+
pdf.multi_cell(0, 10, f"Context: {item['context']}")
|
223 |
+
pdf.multi_cell(0, 10, f"Question: {item['question']}")
|
224 |
+
pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
|
225 |
+
pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
|
226 |
+
pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
|
227 |
pdf.ln(10)
|
228 |
|
229 |
+
return pdf.output(dest='S').encode('latin-1')
|
|
|
230 |
|
231 |
def display_word_cloud(generated_questions):
|
232 |
word_frequency = {}
|
|
|
241 |
plt.axis('off')
|
242 |
st.pyplot()
|
243 |
|
244 |
+
|
245 |
+
def assess_question_quality(context, question, answer):
|
246 |
+
# Assess relevance using cosine similarity
|
247 |
+
context_doc = nlp(context)
|
248 |
+
question_doc = nlp(question)
|
249 |
+
relevance_score = context_doc.similarity(question_doc)
|
250 |
+
|
251 |
+
# Assess complexity using token length (as a simple metric)
|
252 |
+
complexity_score = min(len(question_doc) / 20, 1) # Normalize to 0-1
|
253 |
+
|
254 |
+
# Assess grammatical correctness
|
255 |
+
errors = language_tool.check(question)
|
256 |
+
grammatical_correctness = 1 - (len(errors) / len(question_doc)) # Normalize to 0-1
|
257 |
+
|
258 |
+
# Calculate overall score (you can adjust weights as needed)
|
259 |
+
overall_score = (
|
260 |
+
0.4 * relevance_score +
|
261 |
+
0.3 * complexity_score +
|
262 |
+
0.3 * grammatical_correctness
|
263 |
+
)
|
264 |
+
|
265 |
+
return overall_score, relevance_score, complexity_score, grammatical_correctness
|
266 |
+
|
267 |
+
def main():
|
268 |
+
# Streamlit interface
|
269 |
+
st.title(":blue[Question Generator System]")
|
270 |
+
|
271 |
+
# Initialize session state
|
272 |
+
if 'generated_questions' not in st.session_state:
|
273 |
+
st.session_state.generated_questions = []
|
274 |
+
|
275 |
+
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
|
276 |
+
|
277 |
+
with st.sidebar:
|
278 |
+
st.subheader("Customization Options")
|
279 |
+
# Customization options
|
280 |
+
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
|
281 |
+
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
282 |
+
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
|
283 |
+
with st.expander("Choose the Additional Elements to show"):
|
284 |
+
show_context = st.checkbox("Context",True)
|
285 |
+
show_answer = st.checkbox("Answer",True)
|
286 |
+
show_options = st.checkbox("Options",False)
|
287 |
+
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
|
288 |
+
show_qa_scores = st.checkbox("QA Score",False)
|
289 |
+
col1, col2 = st.columns(2)
|
290 |
+
with col1:
|
291 |
+
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
|
292 |
+
with col2:
|
293 |
+
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
|
294 |
+
|
295 |
+
generate_questions_button = st.button("Generate Questions")
|
296 |
+
if generate_questions_button and text:
|
297 |
+
st.session_state.generated_questions = []
|
298 |
+
keywords = extract_keywords(text, extract_all_keywords)
|
299 |
print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
|
300 |
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
|
|
|
|
|
|
301 |
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
|
302 |
if i >= num_questions:
|
303 |
break
|
|
|
304 |
question = generate_question(context, keyword, num_beams=num_beams)
|
305 |
+
options = generate_options(keyword,context)
|
306 |
+
overall_score, relevance_score, complexity_score, grammatical_correctness = assess_question_quality(context,question,keyword)
|
307 |
+
tpl = {
|
308 |
+
"question" : question,
|
309 |
+
"context" : context,
|
310 |
+
"answer" : keyword,
|
311 |
+
"options" : options,
|
312 |
+
"overall_score" : overall_score,
|
313 |
+
"relevance_score" : relevance_score,
|
314 |
+
"complexity_score" : complexity_score,
|
315 |
+
"grammatical_correctness" : grammatical_correctness,
|
316 |
+
}
|
317 |
+
st.session_state.generated_questions.append(tpl)
|
318 |
+
|
319 |
+
# Display generated questions
|
320 |
+
if st.session_state.generated_questions:
|
321 |
+
st.header("Generated Questions:",divider='blue')
|
322 |
+
for i, q in enumerate(st.session_state.generated_questions):
|
323 |
+
# with st.expander(f"Question {i+1}"):
|
324 |
+
st.subheader(body=f":orange[Q{i+1}:] {q['question']}")
|
325 |
|
326 |
if show_context is True:
|
327 |
+
st.write(f"**Context:** {q['context']}")
|
328 |
if show_answer is True:
|
329 |
+
st.write(f"**Answer:** {q['answer']}")
|
330 |
if show_options is True:
|
331 |
st.write(f"**Options:**")
|
332 |
+
for j, option in enumerate(q['options']):
|
333 |
st.write(f"{chr(65+j)}. {option}")
|
334 |
if show_entity_link is True:
|
335 |
+
linked_entity = entity_linking(q['answer'])
|
336 |
if linked_entity:
|
337 |
st.write(f"**Entity Link:** {linked_entity}")
|
338 |
+
if show_qa_scores is True:
|
339 |
+
st.write(f"**Overall Quality Score:** {q['overall_score']:.2f}")
|
340 |
+
st.write(f"**Relevance Score:** {q['relevance_score']:.2f}")
|
341 |
+
st.write(f"**Complexity Score:** {q['complexity_score']:.2f}")
|
342 |
+
st.write(f"**Grammatical Correctness:** {q['grammatical_correctness']:.2f}")
|
343 |
+
|
344 |
+
# q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
|
345 |
+
if enable_feedback_mode:
|
346 |
+
q['question'] = st.text_input(f"Edit Question {i+1}:", value=q['question'], key=f"question_{i}")
|
347 |
+
q['rating'] = st.selectbox(f"Rate this question (1-5)", options=[1, 2, 3, 4, 5], key=f"rating_{i}")
|
348 |
+
if st.button(f"Submit Feedback for Question {i+1}", key=f"submit_{i}"):
|
349 |
+
save_feedback(q['question'], q['answer'], q['rating'])
|
350 |
+
st.success(f"Feedback submitted for Question {i+1}")
|
351 |
|
|
|
|
|
|
|
|
|
352 |
# Export buttons
|
353 |
+
if st.session_state.generated_questions:
|
354 |
with st.sidebar:
|
355 |
+
csv_data = export_to_csv(st.session_state.generated_questions)
|
356 |
+
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
|
|
|
357 |
|
358 |
+
pdf_data = export_to_pdf(st.session_state.generated_questions)
|
359 |
+
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
|
|
|
|
|
360 |
|
361 |
+
# View Feedback Statistics
|
362 |
+
with st.expander("View Feedback Statistics"):
|
363 |
+
feedback_file = 'question_feedback.json'
|
364 |
+
if os.path.exists(feedback_file):
|
365 |
+
with open(feedback_file, 'r') as f:
|
366 |
+
feedback_data = json.load(f)
|
367 |
+
|
368 |
+
st.subheader("Feedback Statistics")
|
369 |
+
|
370 |
+
# Calculate average rating
|
371 |
+
ratings = [feedback['rating'] for feedback in feedback_data]
|
372 |
+
avg_rating = sum(ratings) / len(ratings) if ratings else 0
|
373 |
+
st.write(f"Average Question Rating: {avg_rating:.2f}")
|
374 |
+
|
375 |
+
# Show distribution of ratings
|
376 |
+
rating_counts = {i: ratings.count(i) for i in range(1, 6)}
|
377 |
+
st.bar_chart(rating_counts)
|
378 |
+
|
379 |
+
# Show some highly rated questions
|
380 |
+
st.subheader("Highly Rated Questions")
|
381 |
+
sorted_feedback = sorted(feedback_data, key=lambda x: x['rating'], reverse=True)
|
382 |
+
top_questions = sorted_feedback[:5]
|
383 |
+
for feedback in top_questions:
|
384 |
+
st.write(f"Question: {feedback['question']}")
|
385 |
+
st.write(f"Answer: {feedback['answer']}")
|
386 |
+
st.write(f"Rating: {feedback['rating']}")
|
387 |
+
st.write("---")
|
388 |
+
else:
|
389 |
+
st.write("No feedback data available yet.")
|
390 |
+
|
391 |
+
print("********************************************************************************")
|
392 |
+
|
393 |
+
if __name__ == '__main__':
|
394 |
+
main()
|