Spaces:
Running
Running
Update c1.py
Browse files
c1.py
CHANGED
@@ -1,72 +1,72 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
-
import torch
|
4 |
-
import spacy
|
5 |
-
import nltk
|
6 |
-
|
7 |
-
#nltk.download('punkt')
|
8 |
-
from nltk.tokenize import sent_tokenize
|
9 |
-
|
10 |
-
# Load spaCy model
|
11 |
-
nlp = spacy.load("en_core_web_sm")
|
12 |
-
|
13 |
-
# Load T5 model and tokenizer
|
14 |
-
model_name = "DevBM/t5-large-squad"
|
15 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
16 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
17 |
-
|
18 |
-
# Function to extract keywords using spaCy
|
19 |
-
def extract_keywords(text):
|
20 |
-
doc = nlp(text)
|
21 |
-
keywords = set()
|
22 |
-
# Extract named entities
|
23 |
-
for entity in doc.ents:
|
24 |
-
keywords.add(entity.text)
|
25 |
-
# Extract nouns and proper nouns
|
26 |
-
for token in doc:
|
27 |
-
if token.pos_ in ["NOUN", "PROPN"]:
|
28 |
-
keywords.add(token.text)
|
29 |
-
return list(keywords)
|
30 |
-
|
31 |
-
# Function to map keywords to sentences
|
32 |
-
def map_keywords_to_sentences(text, keywords):
|
33 |
-
sentences = sent_tokenize(text)
|
34 |
-
keyword_sentence_mapping = {}
|
35 |
-
for keyword in keywords:
|
36 |
-
for i, sentence in enumerate(sentences):
|
37 |
-
if keyword in sentence:
|
38 |
-
# Combine current sentence with surrounding sentences for context
|
39 |
-
start = max(0, i-1)
|
40 |
-
end = min(len(sentences), i+2)
|
41 |
-
context = ' '.join(sentences[start:end])
|
42 |
-
if keyword not in keyword_sentence_mapping:
|
43 |
-
keyword_sentence_mapping[keyword] = context
|
44 |
-
else:
|
45 |
-
keyword_sentence_mapping[keyword] += ' ' + context
|
46 |
-
return keyword_sentence_mapping
|
47 |
-
|
48 |
-
# Function to generate questions
|
49 |
-
def generate_question(context, answer):
|
50 |
-
input_text = f"<context> {context} <answer> {answer}"
|
51 |
-
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
52 |
-
outputs = model.generate(input_ids)
|
53 |
-
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
-
return question
|
55 |
-
|
56 |
-
# Streamlit interface
|
57 |
-
st.title("Question Generator from Text")
|
58 |
-
text = st.text_area("Enter text here:")
|
59 |
-
if st.button("Generate Questions"):
|
60 |
-
if text:
|
61 |
-
keywords = extract_keywords(text)
|
62 |
-
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords)
|
63 |
-
|
64 |
-
st.subheader("Generated Questions:")
|
65 |
-
for keyword, context in keyword_sentence_mapping.items():
|
66 |
-
question = generate_question(context, keyword)
|
67 |
-
st.write(f"**Context:** {context}")
|
68 |
-
st.write(f"**Answer:** {keyword}")
|
69 |
-
st.write(f"**Question:** {question}")
|
70 |
-
st.write("---")
|
71 |
-
else:
|
72 |
-
st.write("Please enter some text to generate questions.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
+
import torch
|
4 |
+
import spacy
|
5 |
+
import nltk
|
6 |
+
from b import b
|
7 |
+
#nltk.download('punkt')
|
8 |
+
from nltk.tokenize import sent_tokenize
|
9 |
+
|
10 |
+
# Load spaCy model
|
11 |
+
nlp = spacy.load("en_core_web_sm")
|
12 |
+
|
13 |
+
# Load T5 model and tokenizer
|
14 |
+
model_name = "DevBM/t5-large-squad"
|
15 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
16 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
17 |
+
|
18 |
+
# Function to extract keywords using spaCy
|
19 |
+
def extract_keywords(text):
|
20 |
+
doc = nlp(text)
|
21 |
+
keywords = set()
|
22 |
+
# Extract named entities
|
23 |
+
for entity in doc.ents:
|
24 |
+
keywords.add(entity.text)
|
25 |
+
# Extract nouns and proper nouns
|
26 |
+
for token in doc:
|
27 |
+
if token.pos_ in ["NOUN", "PROPN"]:
|
28 |
+
keywords.add(token.text)
|
29 |
+
return list(keywords)
|
30 |
+
|
31 |
+
# Function to map keywords to sentences
|
32 |
+
def map_keywords_to_sentences(text, keywords):
|
33 |
+
sentences = sent_tokenize(text)
|
34 |
+
keyword_sentence_mapping = {}
|
35 |
+
for keyword in keywords:
|
36 |
+
for i, sentence in enumerate(sentences):
|
37 |
+
if keyword in sentence:
|
38 |
+
# Combine current sentence with surrounding sentences for context
|
39 |
+
start = max(0, i-1)
|
40 |
+
end = min(len(sentences), i+2)
|
41 |
+
context = ' '.join(sentences[start:end])
|
42 |
+
if keyword not in keyword_sentence_mapping:
|
43 |
+
keyword_sentence_mapping[keyword] = context
|
44 |
+
else:
|
45 |
+
keyword_sentence_mapping[keyword] += ' ' + context
|
46 |
+
return keyword_sentence_mapping
|
47 |
+
|
48 |
+
# Function to generate questions
|
49 |
+
def generate_question(context, answer):
|
50 |
+
input_text = f"<context> {context} <answer> {answer}"
|
51 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
52 |
+
outputs = model.generate(input_ids)
|
53 |
+
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
+
return question
|
55 |
+
|
56 |
+
# Streamlit interface
|
57 |
+
st.title("Question Generator from Text")
|
58 |
+
text = st.text_area("Enter text here:")
|
59 |
+
if st.button("Generate Questions"):
|
60 |
+
if text:
|
61 |
+
keywords = extract_keywords(text)
|
62 |
+
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords)
|
63 |
+
|
64 |
+
st.subheader("Generated Questions:")
|
65 |
+
for keyword, context in keyword_sentence_mapping.items():
|
66 |
+
question = generate_question(context, keyword)
|
67 |
+
st.write(f"**Context:** {context}")
|
68 |
+
st.write(f"**Answer:** {keyword}")
|
69 |
+
st.write(f"**Question:** {question}")
|
70 |
+
st.write("---")
|
71 |
+
else:
|
72 |
+
st.write("Please enter some text to generate questions.")
|