DevBM commited on
Commit
e0e7fd6
1 Parent(s): cbc14b2

adding the options to choose between input text and upload pdf

Browse files
Files changed (1) hide show
  1. app.py +89 -27
app.py CHANGED
@@ -25,12 +25,16 @@ from sentence_transformers import SentenceTransformer, util
25
  import textstat
26
  from spellchecker import SpellChecker
27
  from transformers import pipeline
28
-
 
29
  print("***************************************************************")
30
 
31
  st.set_page_config(
32
  page_title="Question Generator",
33
  initial_sidebar_state="auto",
 
 
 
34
  )
35
 
36
  # Initialize Wikipedia API with a user agent
@@ -64,7 +68,15 @@ def load_qa_models():
64
  nlp, s2v = load_nlp_models()
65
  model, tokenizer = load_model()
66
  similarity_model, spell = load_qa_models()
67
-
 
 
 
 
 
 
 
 
68
  def save_feedback(question, answer,rating):
69
  feedback_file = 'question_feedback.json'
70
  if os.path.exists(feedback_file):
@@ -83,6 +95,31 @@ def save_feedback(question, answer,rating):
83
  with open(feedback_file, 'w') as f:
84
  json.dump(feedback_data, f)
85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  # Function to extract keywords using combined techniques
87
  def extract_keywords(text, extract_all):
88
  doc = nlp(text)
@@ -140,6 +177,17 @@ def get_synonyms(word, n=3):
140
  def generate_options(answer, context, n=3):
141
  options = [answer]
142
 
 
 
 
 
 
 
 
 
 
 
 
143
  # Try to get similar words based on sense2vec
144
  similar_words = get_similar_words_sense2vec(answer, n)
145
  options.extend(similar_words)
@@ -159,7 +207,7 @@ def generate_options(answer, context, n=3):
159
  if len(options) < n + 1:
160
  context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
161
  options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
162
-
163
  # Ensure we have the correct number of unique options
164
  options = list(dict.fromkeys(options))[:n+1]
165
 
@@ -172,6 +220,7 @@ def generate_options(answer, context, n=3):
172
  def map_keywords_to_sentences(text, keywords, context_window_size):
173
  sentences = sent_tokenize(text)
174
  keyword_sentence_mapping = {}
 
175
  for keyword in keywords:
176
  for i, sentence in enumerate(sentences):
177
  if keyword in sentence:
@@ -270,11 +319,10 @@ def main():
270
  if 'generated_questions' not in st.session_state:
271
  st.session_state.generated_questions = []
272
 
273
- text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
274
-
275
  with st.sidebar:
276
  st.subheader("Customization Options")
277
  # Customization options
 
278
  num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
279
  context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
280
  num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
@@ -289,31 +337,45 @@ def main():
289
  extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
290
  with col2:
291
  enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
292
-
 
 
 
 
 
 
 
 
 
293
  generate_questions_button = st.button("Generate Questions")
294
  if generate_questions_button and text:
295
  st.session_state.generated_questions = []
296
- keywords = extract_keywords(text, extract_all_keywords)
297
- print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
298
- keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
299
- for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
300
- if i >= num_questions:
301
- break
302
- question = generate_question(context, keyword, num_beams=num_beams)
303
- options = generate_options(keyword,context)
304
- overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context,question,keyword)
305
- tpl = {
306
- "question" : question,
307
- "context" : context,
308
- "answer" : keyword,
309
- "options" : options,
310
- "overall_score" : overall_score,
311
- "relevance_score" : relevance_score,
312
- "complexity_score" : complexity_score,
313
- "spelling_correctness" : spelling_correctness,
314
- }
315
- st.session_state.generated_questions.append(tpl)
316
-
 
 
 
 
 
317
  # Display generated questions
318
  if st.session_state.generated_questions:
319
  st.header("Generated Questions:",divider='blue')
 
25
  import textstat
26
  from spellchecker import SpellChecker
27
  from transformers import pipeline
28
+ import re
29
+ import pymupdf
30
  print("***************************************************************")
31
 
32
  st.set_page_config(
33
  page_title="Question Generator",
34
  initial_sidebar_state="auto",
35
+ menu_items={
36
+ "About" : "#Hi this our project."
37
+ }
38
  )
39
 
40
  # Initialize Wikipedia API with a user agent
 
68
  nlp, s2v = load_nlp_models()
69
  model, tokenizer = load_model()
70
  similarity_model, spell = load_qa_models()
71
+ context_model = similarity_model
72
+
73
+ def get_pdf_text(pdf_file):
74
+ doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
75
+ text = ""
76
+ for page_num in range(doc.page_count):
77
+ page = doc.load_page(page_num)
78
+ text += page.get_text()
79
+ return text
80
  def save_feedback(question, answer,rating):
81
  feedback_file = 'question_feedback.json'
82
  if os.path.exists(feedback_file):
 
95
  with open(feedback_file, 'w') as f:
96
  json.dump(feedback_data, f)
97
 
98
+
99
+ # Function to clean text
100
+ def clean_text(text):
101
+ text = re.sub(r"[^\x00-\x7F]", " ", text)
102
+ return text
103
+
104
+ # Function to create text chunks
105
+ def segment_text(text, max_segment_length=1000):
106
+ """Segment the text into smaller chunks."""
107
+ sentences = sent_tokenize(text)
108
+ segments = []
109
+ current_segment = ""
110
+
111
+ for sentence in sentences:
112
+ if len(current_segment) + len(sentence) <= max_segment_length:
113
+ current_segment += sentence + " "
114
+ else:
115
+ segments.append(current_segment.strip())
116
+ current_segment = sentence + " "
117
+
118
+ if current_segment:
119
+ segments.append(current_segment.strip())
120
+ print(f"\n\nSegement Chunks: {segments}\n\n")
121
+ return segments
122
+
123
  # Function to extract keywords using combined techniques
124
  def extract_keywords(text, extract_all):
125
  doc = nlp(text)
 
177
  def generate_options(answer, context, n=3):
178
  options = [answer]
179
 
180
+
181
+ # Add contextually relevant words using a pre-trained model
182
+ context_embedding = context_model.encode(context)
183
+ answer_embedding = context_model.encode(answer)
184
+ context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
185
+
186
+ # Compute similarity scores and sort context words
187
+ similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
188
+ sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
189
+ options.extend(sorted_context_words[:n])
190
+
191
  # Try to get similar words based on sense2vec
192
  similar_words = get_similar_words_sense2vec(answer, n)
193
  options.extend(similar_words)
 
207
  if len(options) < n + 1:
208
  context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
209
  options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
210
+ print(f"\n\nAll Possible Options: {options}\n\n")
211
  # Ensure we have the correct number of unique options
212
  options = list(dict.fromkeys(options))[:n+1]
213
 
 
220
  def map_keywords_to_sentences(text, keywords, context_window_size):
221
  sentences = sent_tokenize(text)
222
  keyword_sentence_mapping = {}
223
+ print(f"\n\nSentences: {sentences}\n\n")
224
  for keyword in keywords:
225
  for i, sentence in enumerate(sentences):
226
  if keyword in sentence:
 
319
  if 'generated_questions' not in st.session_state:
320
  st.session_state.generated_questions = []
321
 
 
 
322
  with st.sidebar:
323
  st.subheader("Customization Options")
324
  # Customization options
325
+ input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
326
  num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
327
  context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
328
  num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
 
337
  extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
338
  with col2:
339
  enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
340
+ text = None
341
+ if input_type == "Text Input":
342
+ text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
343
+ elif input_type == "Upload PDF":
344
+ file = st.file_uploader("Upload PDF Files")
345
+ if file is not None:
346
+ text = get_pdf_text(file)
347
+ if text:
348
+ text = clean_text(text)
349
+ segments = segment_text(text)
350
  generate_questions_button = st.button("Generate Questions")
351
  if generate_questions_button and text:
352
  st.session_state.generated_questions = []
353
+ for text in segments:
354
+ keywords = extract_keywords(text, extract_all_keywords)
355
+ print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
356
+ keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
357
+ for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
358
+ if i >= num_questions:
359
+ break
360
+ question = generate_question(context, keyword, num_beams=num_beams)
361
+ options = generate_options(keyword,context)
362
+ overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context,question,keyword)
363
+ if overall_score < 0.5:
364
+ continue
365
+ tpl = {
366
+ "question" : question,
367
+ "context" : context,
368
+ "answer" : keyword,
369
+ "options" : options,
370
+ "overall_score" : overall_score,
371
+ "relevance_score" : relevance_score,
372
+ "complexity_score" : complexity_score,
373
+ "spelling_correctness" : spelling_correctness,
374
+ }
375
+ st.session_state.generated_questions.append(tpl)
376
+
377
+ # sort question based on their quality score
378
+ st.session_state.generated_questions = sorted(st.session_state.generated_questions,key = lambda x: x['overall_score'], reverse=True)
379
  # Display generated questions
380
  if st.session_state.generated_questions:
381
  st.header("Generated Questions:",divider='blue')