Spaces:
Running
Running
adding the options to choose between input text and upload pdf
Browse files
app.py
CHANGED
@@ -25,12 +25,16 @@ from sentence_transformers import SentenceTransformer, util
|
|
25 |
import textstat
|
26 |
from spellchecker import SpellChecker
|
27 |
from transformers import pipeline
|
28 |
-
|
|
|
29 |
print("***************************************************************")
|
30 |
|
31 |
st.set_page_config(
|
32 |
page_title="Question Generator",
|
33 |
initial_sidebar_state="auto",
|
|
|
|
|
|
|
34 |
)
|
35 |
|
36 |
# Initialize Wikipedia API with a user agent
|
@@ -64,7 +68,15 @@ def load_qa_models():
|
|
64 |
nlp, s2v = load_nlp_models()
|
65 |
model, tokenizer = load_model()
|
66 |
similarity_model, spell = load_qa_models()
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def save_feedback(question, answer,rating):
|
69 |
feedback_file = 'question_feedback.json'
|
70 |
if os.path.exists(feedback_file):
|
@@ -83,6 +95,31 @@ def save_feedback(question, answer,rating):
|
|
83 |
with open(feedback_file, 'w') as f:
|
84 |
json.dump(feedback_data, f)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Function to extract keywords using combined techniques
|
87 |
def extract_keywords(text, extract_all):
|
88 |
doc = nlp(text)
|
@@ -140,6 +177,17 @@ def get_synonyms(word, n=3):
|
|
140 |
def generate_options(answer, context, n=3):
|
141 |
options = [answer]
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# Try to get similar words based on sense2vec
|
144 |
similar_words = get_similar_words_sense2vec(answer, n)
|
145 |
options.extend(similar_words)
|
@@ -159,7 +207,7 @@ def generate_options(answer, context, n=3):
|
|
159 |
if len(options) < n + 1:
|
160 |
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
161 |
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
|
162 |
-
|
163 |
# Ensure we have the correct number of unique options
|
164 |
options = list(dict.fromkeys(options))[:n+1]
|
165 |
|
@@ -172,6 +220,7 @@ def generate_options(answer, context, n=3):
|
|
172 |
def map_keywords_to_sentences(text, keywords, context_window_size):
|
173 |
sentences = sent_tokenize(text)
|
174 |
keyword_sentence_mapping = {}
|
|
|
175 |
for keyword in keywords:
|
176 |
for i, sentence in enumerate(sentences):
|
177 |
if keyword in sentence:
|
@@ -270,11 +319,10 @@ def main():
|
|
270 |
if 'generated_questions' not in st.session_state:
|
271 |
st.session_state.generated_questions = []
|
272 |
|
273 |
-
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
|
274 |
-
|
275 |
with st.sidebar:
|
276 |
st.subheader("Customization Options")
|
277 |
# Customization options
|
|
|
278 |
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
|
279 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
280 |
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
|
@@ -289,31 +337,45 @@ def main():
|
|
289 |
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
|
290 |
with col2:
|
291 |
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
generate_questions_button = st.button("Generate Questions")
|
294 |
if generate_questions_button and text:
|
295 |
st.session_state.generated_questions = []
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
317 |
# Display generated questions
|
318 |
if st.session_state.generated_questions:
|
319 |
st.header("Generated Questions:",divider='blue')
|
|
|
25 |
import textstat
|
26 |
from spellchecker import SpellChecker
|
27 |
from transformers import pipeline
|
28 |
+
import re
|
29 |
+
import pymupdf
|
30 |
print("***************************************************************")
|
31 |
|
32 |
st.set_page_config(
|
33 |
page_title="Question Generator",
|
34 |
initial_sidebar_state="auto",
|
35 |
+
menu_items={
|
36 |
+
"About" : "#Hi this our project."
|
37 |
+
}
|
38 |
)
|
39 |
|
40 |
# Initialize Wikipedia API with a user agent
|
|
|
68 |
nlp, s2v = load_nlp_models()
|
69 |
model, tokenizer = load_model()
|
70 |
similarity_model, spell = load_qa_models()
|
71 |
+
context_model = similarity_model
|
72 |
+
|
73 |
+
def get_pdf_text(pdf_file):
|
74 |
+
doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
|
75 |
+
text = ""
|
76 |
+
for page_num in range(doc.page_count):
|
77 |
+
page = doc.load_page(page_num)
|
78 |
+
text += page.get_text()
|
79 |
+
return text
|
80 |
def save_feedback(question, answer,rating):
|
81 |
feedback_file = 'question_feedback.json'
|
82 |
if os.path.exists(feedback_file):
|
|
|
95 |
with open(feedback_file, 'w') as f:
|
96 |
json.dump(feedback_data, f)
|
97 |
|
98 |
+
|
99 |
+
# Function to clean text
|
100 |
+
def clean_text(text):
|
101 |
+
text = re.sub(r"[^\x00-\x7F]", " ", text)
|
102 |
+
return text
|
103 |
+
|
104 |
+
# Function to create text chunks
|
105 |
+
def segment_text(text, max_segment_length=1000):
|
106 |
+
"""Segment the text into smaller chunks."""
|
107 |
+
sentences = sent_tokenize(text)
|
108 |
+
segments = []
|
109 |
+
current_segment = ""
|
110 |
+
|
111 |
+
for sentence in sentences:
|
112 |
+
if len(current_segment) + len(sentence) <= max_segment_length:
|
113 |
+
current_segment += sentence + " "
|
114 |
+
else:
|
115 |
+
segments.append(current_segment.strip())
|
116 |
+
current_segment = sentence + " "
|
117 |
+
|
118 |
+
if current_segment:
|
119 |
+
segments.append(current_segment.strip())
|
120 |
+
print(f"\n\nSegement Chunks: {segments}\n\n")
|
121 |
+
return segments
|
122 |
+
|
123 |
# Function to extract keywords using combined techniques
|
124 |
def extract_keywords(text, extract_all):
|
125 |
doc = nlp(text)
|
|
|
177 |
def generate_options(answer, context, n=3):
|
178 |
options = [answer]
|
179 |
|
180 |
+
|
181 |
+
# Add contextually relevant words using a pre-trained model
|
182 |
+
context_embedding = context_model.encode(context)
|
183 |
+
answer_embedding = context_model.encode(answer)
|
184 |
+
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
185 |
+
|
186 |
+
# Compute similarity scores and sort context words
|
187 |
+
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
|
188 |
+
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
|
189 |
+
options.extend(sorted_context_words[:n])
|
190 |
+
|
191 |
# Try to get similar words based on sense2vec
|
192 |
similar_words = get_similar_words_sense2vec(answer, n)
|
193 |
options.extend(similar_words)
|
|
|
207 |
if len(options) < n + 1:
|
208 |
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
|
209 |
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
|
210 |
+
print(f"\n\nAll Possible Options: {options}\n\n")
|
211 |
# Ensure we have the correct number of unique options
|
212 |
options = list(dict.fromkeys(options))[:n+1]
|
213 |
|
|
|
220 |
def map_keywords_to_sentences(text, keywords, context_window_size):
|
221 |
sentences = sent_tokenize(text)
|
222 |
keyword_sentence_mapping = {}
|
223 |
+
print(f"\n\nSentences: {sentences}\n\n")
|
224 |
for keyword in keywords:
|
225 |
for i, sentence in enumerate(sentences):
|
226 |
if keyword in sentence:
|
|
|
319 |
if 'generated_questions' not in st.session_state:
|
320 |
st.session_state.generated_questions = []
|
321 |
|
|
|
|
|
322 |
with st.sidebar:
|
323 |
st.subheader("Customization Options")
|
324 |
# Customization options
|
325 |
+
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
|
326 |
num_beams = st.slider("Select number of beams for question generation", min_value=1, max_value=10, value=5)
|
327 |
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
|
328 |
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
|
|
|
337 |
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
|
338 |
with col2:
|
339 |
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
|
340 |
+
text = None
|
341 |
+
if input_type == "Text Input":
|
342 |
+
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.")
|
343 |
+
elif input_type == "Upload PDF":
|
344 |
+
file = st.file_uploader("Upload PDF Files")
|
345 |
+
if file is not None:
|
346 |
+
text = get_pdf_text(file)
|
347 |
+
if text:
|
348 |
+
text = clean_text(text)
|
349 |
+
segments = segment_text(text)
|
350 |
generate_questions_button = st.button("Generate Questions")
|
351 |
if generate_questions_button and text:
|
352 |
st.session_state.generated_questions = []
|
353 |
+
for text in segments:
|
354 |
+
keywords = extract_keywords(text, extract_all_keywords)
|
355 |
+
print(f"\n\nFinal Keywords in Main Function: {keywords}\n\n")
|
356 |
+
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
|
357 |
+
for i, (keyword, context) in enumerate(keyword_sentence_mapping.items()):
|
358 |
+
if i >= num_questions:
|
359 |
+
break
|
360 |
+
question = generate_question(context, keyword, num_beams=num_beams)
|
361 |
+
options = generate_options(keyword,context)
|
362 |
+
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context,question,keyword)
|
363 |
+
if overall_score < 0.5:
|
364 |
+
continue
|
365 |
+
tpl = {
|
366 |
+
"question" : question,
|
367 |
+
"context" : context,
|
368 |
+
"answer" : keyword,
|
369 |
+
"options" : options,
|
370 |
+
"overall_score" : overall_score,
|
371 |
+
"relevance_score" : relevance_score,
|
372 |
+
"complexity_score" : complexity_score,
|
373 |
+
"spelling_correctness" : spelling_correctness,
|
374 |
+
}
|
375 |
+
st.session_state.generated_questions.append(tpl)
|
376 |
+
|
377 |
+
# sort question based on their quality score
|
378 |
+
st.session_state.generated_questions = sorted(st.session_state.generated_questions,key = lambda x: x['overall_score'], reverse=True)
|
379 |
# Display generated questions
|
380 |
if st.session_state.generated_questions:
|
381 |
st.header("Generated Questions:",divider='blue')
|