import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('brown') nltk.download('wordnet') import streamlit as st st.set_page_config( page_icon='cyclone', page_title="Question Generator", initial_sidebar_state="auto", menu_items={ "About" : "Hi this our project." } ) from text_processing import clean_text, get_text_from_document from question_generation import generate_questions_async from visualization import display_word_cloud from data_export import export_to_csv, export_to_pdf from feedback import collect_feedback, analyze_feedback, export_feedback_data from utils import get_session_id, initialize_state, get_state, set_state, display_info, QuestionGenerationError, entity_linking import asyncio import time import pandas as pd from data_export import send_email_with_attachment st.set_option('deprecation.showPyplotGlobalUse',False) with st.sidebar: select_model = st.selectbox("Select Model", ("T5-large","T5-small")) if select_model == "T5-large": modelname = "DevBM/t5-large-squad" elif select_model == "T5-small": modelname = "AneriThakkar/flan-t5-small-finetuned" def main(): st.title(":blue[Question Generator System]") session_id = get_session_id() state = initialize_state(session_id) if 'feedback_data' not in st.session_state: st.session_state.feedback_data = [] with st.sidebar: show_info = st.toggle('Show Info',False) if show_info: display_info() st.subheader("Customization Options") # Customization options input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF")) with st.expander("Choose the Additional Elements to show"): show_context = st.checkbox("Context",False) show_answer = st.checkbox("Answer",True) show_options = st.checkbox("Options",True) show_entity_link = st.checkbox("Entity Link For Wikipedia",True) show_qa_scores = st.checkbox("QA Score",True) show_blank_question = st.checkbox("Fill in the Blank Questions",True) num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2) context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1) num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5) col1, col2 = st.columns(2) with col1: extract_all_keywords = st.toggle("Extract Max Keywords",value=False) with col2: enable_feedback_mode = st.toggle("Enable Feedback Mode",False) text = None if input_type == "Text Input": text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.", help="Enter or paste your text here") elif input_type == "Upload Document": file = st.file_uploader("Upload Document File", type=['pdf', 'docx', 'doc', 'pptx', 'ppt', 'html', 'tex', 'txt']) if file is not None: try: text = get_text_from_document(file) except Exception as e: st.error(f"Error reading file: {str(e)}") text = None if text: text = clean_text(text) with st.expander("Show text"): st.write(text) # st.text(text) generate_questions_button = st.button("Generate Questions",help="This is the generate questions button") # st.markdown('Above is the generate questions button', unsafe_allow_html=True) if generate_questions_button and text: start_time = time.time() with st.spinner("Generating questions..."): try: state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords,modelname)) if not state['generated_questions']: st.warning("No questions were generated. The text might be too short or lack suitable content.") else: st.success(f"Successfully generated {len(state['generated_questions'])} questions!") except QuestionGenerationError as e: st.error(f"An error occurred during question generation: {str(e)}") except Exception as e: st.error(f"An unexpected error occurred: {str(e)}") print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n") data = get_state(session_id) print(data) end_time = time.time() print(f"Time Taken to generate: {end_time-start_time}") set_state(session_id, 'generated_questions', state['generated_questions']) # sort question based on their quality score state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True) # Display generated questions if state['generated_questions']: st.header("Generated Questions:",divider='blue') for i, q in enumerate(state['generated_questions']): st.subheader(body=f":orange[Q{i+1}:] {q['question']}") if show_blank_question is True: st.write(f"**Fill in the Blank Question:** {q['blank_question']}") if show_context is True: st.write(f"**Context:** {q['context']}") if show_answer is True: st.write(f"**Answer:** {q['answer']}") if show_options is True: st.write(f"**Options:**") for j, option in enumerate(q['options']): st.write(f"{chr(65+j)}. {option}") if show_entity_link is True: linked_entity = entity_linking(q['answer']) if linked_entity: st.write(f"**Entity Link:** {linked_entity}") if show_qa_scores is True: m1,m2,m3,m4 = st.columns([1.7,1,1,1]) m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}") m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}") m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}") m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}") # q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}") if enable_feedback_mode: collect_feedback( i, question = q['question'], answer = q['answer'], context = q['context'], options = q['options'], ) st.write("---") # Export buttons # if st.session_state.generated_questions: if state['generated_questions']: with st.sidebar: # Adding error handling while exporting the files # --------------------------------------------------------------------- try: csv_data = export_to_csv(state['generated_questions']) st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv') pdf_data = export_to_pdf(state['generated_questions']) st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf') except Exception as e: st.error(f"Error exporting CSV: {e}") with st.expander("View Visualizations"): questions = [tpl['question'] for tpl in state['generated_questions']] overall_scores = [tpl['overall_score'] for tpl in state['generated_questions']] st.subheader('WordCloud of Questions',divider='rainbow') display_word_cloud(questions) st.subheader('Overall Scores',divider='violet') overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores']) st.line_chart(overall_scores) # View Feedback Statistics with st.expander("View Feedback Statistics"): analyze_feedback() if st.button("Export Feedback"): feedback_data = export_feedback_data() pswd = st.secrets['EMAIL_PASSWORD'] send_email_with_attachment( email_subject='feedback from QGen', email_body='Please find the attached feedback JSON file.', recipient_emails=['apjc01unique@gmail.com', 'channingfisher7@gmail.com'], sender_email='apjc01unique@gmail.com', sender_password=pswd, attachment=feedback_data ) print("********************************************************************************") if __name__ == '__main__': try: main() except Exception as e: st.error(f"An unexpected error occurred: {str(e)}") st.error("Please try refreshing the page. If the problem persists, contact support.")