from nltk.corpus import stopwords from rake_nltk import Rake from sklearn.feature_extraction.text import TfidfVectorizer import spacy from transformers import pipeline from gliner import GLiNER from load_models import load_nlp_models nlp, s2v = load_nlp_models() def filter_keywords(extracted_keywords): unwanted_keywords =[ # Common punctuation marks '.', ',', '!', '?', ':', ';', '-', '_', '(', ')', '[', ']', '{', '}', '/', '\\', '|', '@', '#', '$', '%', '^', '&', '*', '+', '=', '<', '>', '`', '~', '"', "'", # Common contractions (if not already removed as stopwords) "n't", "'s", "'m", "'re", "'ll", "'ve", "'d", # Common abbreviations 'etc', 'eg', 'ie', 'ex', 'vs', 'viz', 'tbd', 'tba', # To be determined/announced 'na', 'n/a', # Not applicable # Single characters 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', # HTML-related tags (if the text contains any HTML content) '', '', '', '', '', '', '
', '
', '

', '

', '
', '
', '

', '

', '

', '

', '

', '

', # Random technical or common abbreviations that aren't meaningful keywords 'etc', 'e.g', 'i.e', 'vs', 'ex', 'vol', 'sec', 'pg', 'id', 'ref', 'eq', # Miscellaneous tokens 'www', 'com', 'http', 'https', 'ftp', 'pdf', 'doc', 'img', 'gif', 'jpeg', 'jpg', 'png', 'mp4', 'mp3', 'org', 'net', 'edu', 'untitled', 'noname', 'unknown', 'undefined', # Single letters commonly used in bullet points or references 'i', 'ii', 'iii', 'iv', 'v', 'vi', 'vii', 'viii', 'ix', 'x', 'xi', 'xii', # Common file extensions (if filenames are included in the text) '.jpg', '.png', '.pdf', '.doc', '.docx', '.ppt', '.pptx', '.xls', '.xlsx', '.csv', '.txt', '.zip', '.tar', '.gz', '.exe', '.bat', '.sh', '.py', '.cpp', '.java', # Other tokens related to formatting or structure 'chapter', 'section', 'figure', 'table', 'appendix', # Miscellaneous general noise terms 'note', 'item', 'items', 'number', 'numbers', 'figure', 'case', 'cases', 'example', 'examples', 'type', 'types', 'section', 'part', 'parts' ] # Convert both lists to sets for efficient lookup extracted_set = set(extracted_keywords) unwanted_set = set(unwanted_keywords) # Remove unwanted keywords filtered_keywords = extracted_set - unwanted_set # Convert back to a list and sort (optional) return sorted(list(filtered_keywords)) def remove_stopwords(keywords): stop_words = set(stopwords.words('english')) modified_keywords = [''.join(keyword.split()) for keyword in keywords] filtered_keywords = [keyword for keyword in modified_keywords if keyword.lower() not in stop_words] original_keywords = [] for keyword in filtered_keywords: for original_keyword in keywords: if ''.join(original_keyword.split()).lower() == keyword.lower(): original_keywords.append(original_keyword) break return original_keywords # def enhanced_ner(text): # nlp = spacy.load("en_core_web_trf") # ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english") # doc = nlp(text) # spacy_entities = set((ent.text, ent.label_) for ent in doc.ents) # hf_entities = set((ent['word'], ent['entity']) for ent in ner_pipeline(text)) # combined_entities = spacy_entities.union(hf_entities) # keywords = [entity[0] for entity in combined_entities] # return list(keywords) def extract_keywords(text, extract_all): try: text = text.lower() # enhanced_ner_entities = enhanced_ner(text) # print("Enhanced ner entities: ",enhanced_ner_entities) # enhanced_ner_entities = remove_stopwords(enhanced_ner_entities) # enhanced_ner_entities = filter_keywords(enhanced_ner_entities) # print("Enhanced ner entities after applying filter and stopwords removal: ",enhanced_ner_entities) gliner_model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5") labels = ["person", "organization", "phone number", "address", "email", "date of birth", "mobile phone number", "medication", "ip address", "email address", "landline phone number", "blood type", "digital signature", "postal code", "date"] entities = gliner_model.predict_entities(text, labels, threshold=0.5) gliner_keywords = set(remove_stopwords([ent["text"] for ent in entities])) print(f"Gliner keywords:{gliner_keywords}") # if extract_all is False: # return list(gliner_keywords) doc = nlp(text) spacy_keywords = set(remove_stopwords([ent.text for ent in doc.ents])) print(f"\n\nSpacy Entities: {spacy_keywords} \n\n") if extract_all is False: # combined_keywords_without_all = list(spacy_keywords.union(gliner_keywords).union(enhanced_ner_entities)) combined_keywords_without_all = list(spacy_keywords.union(gliner_keywords)) filtered_results = filter_keywords(combined_keywords_without_all) print("Keywords returned: ",filtered_results) return list(filtered_results) rake = Rake() rake.extract_keywords_from_text(text) rake_keywords = set(remove_stopwords(rake.get_ranked_phrases())) print(f"\n\nRake Keywords: {rake_keywords} \n\n") vectorizer = TfidfVectorizer(stop_words='english') X = vectorizer.fit_transform([text]) tfidf_keywords = set(remove_stopwords(vectorizer.get_feature_names_out())) print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n") combined_keywords = list(rake_keywords.union(spacy_keywords).union(tfidf_keywords).union(gliner_keywords)) filtered_results = filter_keywords(combined_keywords) print("Keywords returned: ",filtered_results) return list(filtered_results) except Exception as e: raise Exception(f"Error in keyword extraction: {str(e)}")