Brainstorm / app.py
csabakecskemeti's picture
Update app.py
2bd16be verified
import os
import gradio as gr
from openai import OpenAI
# from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# I can run it on the workstation with LMStudio and access it via the proxy
# client = InferenceClient("DevQuasar/llama3_8b_chat_brainstorm-v2.1")
self_host_url = os.environ['URL']
api_key = os.environ['API_KEY']
client = OpenAI(base_url=self_host_url, api_key=api_key)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message+" "}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
try:
for message in client.chat.completions.create(
model="DevQuasar/llama3_8b_chat_brainstorm-GGUF",
messages=messages,
temperature=temperature,
stream=True,
):
token = message.choices[0].delta.content
try:
response += token
except:
# LMStudio response has empty token
pass
yield response
except:
raise gr.Warning("Apologies for the inconvenience! Our model is currently self-hosted and unavailable at the moment.")
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
title = "Brainstorm Demo by devquasar.com"
desc = "Please note that this model is self-hosted, which means it may not be available at all times. Thank you for your understanding!"
long_desc = """Brainstorm facilitates idea exploration through interaction with a Language Model (LLM).
Rather than providing direct answers, the model engages in a dialogue with users, offering probing
questions aimed at fostering deeper contemplation and consideration of various facets of their ideas."""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant helps to brainstorm ideas.", label="System message"),
#gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
title=title,
description=desc
)
if __name__ == "__main__":
demo.launch()