Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Qwen2-VL model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.nn import CrossEntropyLoss, LayerNorm | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, StaticCache | |
from transformers.modeling_attn_mask_utils import ( | |
AttentionMaskConverter, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
ModelOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from qwen2_vl.configuration_qwen2_vl import Qwen2VLConfig, Qwen2VLVisionConfig | |
import traceback | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_varlen_func | |
from ...modeling_flash_attention_utils import _flash_attention_forward | |
else: | |
flash_attn_varlen_func = None | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "Qwen2VLConfig" | |
class Qwen2VLCausalLMOutputWithPast(ModelOutput): | |
""" | |
Base class for Qwen2VL causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): | |
The rope index difference between sequence length and multimodal rope. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
rope_deltas: Optional[torch.LongTensor] = None | |
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RotaryEmbedding | |
class Qwen2RotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, position_ids, mrope_section, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). | |
Explanation: | |
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding | |
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For | |
vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately. | |
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. | |
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, | |
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no | |
difference with modern LLMs. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
mrope_section(`List(int)`): | |
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids] | |
sin = sin[position_ids] | |
mrope_section = mrope_section * 2 | |
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( | |
unsqueeze_dim | |
) | |
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( | |
unsqueeze_dim | |
) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: | |
orig_dtype = tensor.dtype | |
tensor = tensor.float() | |
cos = freqs.cos() | |
sin = freqs.sin() | |
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() | |
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() | |
output = (tensor * cos) + (rotate_half(tensor) * sin) | |
output = output.to(orig_dtype) | |
return output | |
class VisionRotaryEmbedding(nn.Module): | |
def __init__(self, dim: int, theta: float = 10000.0) -> None: | |
super().__init__() | |
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
def forward(self, seqlen: int) -> torch.Tensor: | |
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(seq, self.inv_freq) | |
return freqs | |
class PatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 14, | |
temporal_patch_size: int = 2, | |
in_channels: int = 3, | |
embed_dim: int = 1152, | |
) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.temporal_patch_size = temporal_patch_size | |
self.in_channels = in_channels | |
self.embed_dim = embed_dim | |
kernel_size = [temporal_patch_size, patch_size, patch_size] | |
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
target_dtype = self.proj.weight.dtype | |
hidden_states = hidden_states.view( | |
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size | |
) | |
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) | |
return hidden_states | |
class PatchMerger(nn.Module): | |
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None: | |
super().__init__() | |
self.hidden_size = context_dim * (spatial_merge_size**2) | |
self.ln_q = LayerNorm(context_dim, eps=1e-6) | |
self.mlp = nn.Sequential( | |
nn.Linear(self.hidden_size, self.hidden_size), | |
nn.GELU(), | |
nn.Linear(self.hidden_size, dim), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) | |
return x | |
class VisionMlp(nn.Module): | |
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None: | |
super().__init__() | |
self.fc1 = nn.Linear(dim, hidden_dim) | |
self.act = ACT2FN[hidden_act] | |
self.fc2 = nn.Linear(hidden_dim, dim) | |
def forward(self, x) -> torch.Tensor: | |
return self.fc2(self.act(self.fc1(x))) | |
class VisionAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 16) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=True) | |
self.proj = nn.Linear(dim, dim) | |
def forward( | |
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None | |
) -> torch.Tensor: | |
seq_length = hidden_states.shape[0] | |
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) | |
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
attention_mask = torch.full( | |
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype | |
) | |
for i in range(1, len(cu_seqlens)): | |
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0 | |
q = q.transpose(0, 1) | |
k = k.transpose(0, 1) | |
v = v.transpose(0, 1) | |
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) | |
attn_weights = attn_weights + attention_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) | |
attn_output = torch.matmul(attn_weights, v) | |
attn_output = attn_output.transpose(0, 1) | |
attn_output = attn_output.reshape(seq_length, -1) | |
attn_output = self.proj(attn_output) | |
return attn_output | |
class VisionFlashAttention2(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 16) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=True) | |
self.proj = nn.Linear(dim, dim) | |
def forward( | |
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None | |
) -> torch.Tensor: | |
seq_length = hidden_states.shape[0] | |
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) | |
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() | |
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( | |
seq_length, -1 | |
) | |
attn_output = self.proj(attn_output) | |
return attn_output | |
class VisionSdpaAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 16) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=True) | |
self.proj = nn.Linear(dim, dim) | |
def forward( | |
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None | |
) -> torch.Tensor: | |
seq_length = hidden_states.shape[0] | |
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) | |
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) | |
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool) | |
for i in range(1, len(cu_seqlens)): | |
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True | |
q = q.transpose(0, 1) | |
k = k.transpose(0, 1) | |
v = v.transpose(0, 1) | |
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0) | |
attn_output = attn_output.transpose(0, 1) | |
attn_output = attn_output.reshape(seq_length, -1) | |
attn_output = self.proj(attn_output) | |
return attn_output | |
QWEN2_VL_VISION_ATTENTION_CLASSES = { | |
"eager": VisionAttention, | |
"flash_attention_2": VisionFlashAttention2, | |
"sdpa": VisionSdpaAttention, | |
} | |
class Qwen2VLVisionBlock(nn.Module): | |
def __init__(self, config, attn_implementation: str = "sdpa") -> None: | |
super().__init__() | |
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6) | |
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6) | |
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio) | |
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation]( | |
config.embed_dim, num_heads=config.num_heads | |
) | |
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act) | |
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: | |
hidden_states = hidden_states + self.attn( | |
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb | |
) | |
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) | |
return hidden_states | |
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position | |
def _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask: torch.Tensor, | |
sequence_length: int, | |
target_length: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
min_dtype: float, | |
cache_position: torch.Tensor, | |
batch_size: int, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
Args: | |
attention_mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
sequence_length (`int`): | |
The sequence length being processed. | |
target_length (`int`): | |
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
dtype (`torch.dtype`): | |
The dtype to use for the 4D attention mask. | |
device (`torch.device`): | |
The device to plcae the 4D attention mask on. | |
min_dtype (`float`): | |
The minimum value representable with the dtype `dtype`. | |
cache_position (`torch.Tensor`): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
batch_size (`torch.Tensor`): | |
Batch size. | |
""" | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
causal_mask = attention_mask | |
else: | |
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
padding_mask, min_dtype | |
) | |
return causal_mask | |
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RMSNorm | |
class Qwen2RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Qwen2RMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP | |
class Qwen2MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, hidden_state): | |
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class Qwen2VLAttention(nn.Module): | |
""" | |
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
and "Generating Long Sequences with Sparse Transformers". | |
""" | |
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
self.attention_dropout = config.attention_dropout | |
self.rope_scaling = config.rope_scaling | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.rotary_emb = Qwen2RotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_multimodal_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids, self.rope_scaling["mrope_section"] | |
) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, -1) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class Qwen2VLFlashAttention2(Qwen2VLAttention): | |
""" | |
Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention` | |
as the weights of the module stays untouched. The only required change would be on the forward pass | |
where it needs to correctly call the public API of flash attention and deal with padding tokens | |
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom | |
config.max_window_layers layers. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
): | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
# Because the input can be padded, the absolute sequence length depends on the max position id. | |
rotary_seq_len = ( | |
max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len | |
) | |
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) | |
query_states, key_states = apply_multimodal_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids, self.rope_scaling["mrope_section"] | |
) | |
if past_key_value is not None: | |
# Activate slicing cache only if the config has a value `sliding_windows` attribute | |
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | |
if ( | |
getattr(self.config, "sliding_window", None) is not None | |
and kv_seq_len > self.config.sliding_window | |
and cache_has_contents | |
): | |
slicing_tokens = 1 - self.config.sliding_window | |
past_key = past_key_value[self.layer_idx][0] | |
past_value = past_key_value[self.layer_idx][1] | |
past_key = past_key[:, :, slicing_tokens:, :].contiguous() | |
past_value = past_value[:, :, slicing_tokens:, :].contiguous() | |
if past_key.shape[-2] != self.config.sliding_window - 1: | |
raise ValueError( | |
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | |
f" {past_key.shape}" | |
) | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, slicing_tokens:] | |
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
dropout_rate = 0.0 if not self.training else self.attention_dropout | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in float16 just to be sure everything works as expected. | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
# Reashape to the expected shape for Flash Attention | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
if ( | |
self.config.use_sliding_window | |
and getattr(self.config, "sliding_window", None) is not None | |
and self.layer_idx >= self.config.max_window_layers | |
): | |
sliding_window = self.config.sliding_window | |
else: | |
sliding_window = None | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
sliding_window=sliding_window, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class Qwen2VLSdpaAttention(Qwen2VLAttention): | |
""" | |
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
# Adapted from Qwen2Attention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_multimodal_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids, self.rope_scaling["mrope_section"] | |
) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal = True if causal_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
QWEN2_VL_ATTENTION_CLASSES = { | |
"eager": Qwen2VLAttention, | |
"flash_attention_2": Qwen2VLFlashAttention2, | |
"sdpa": Qwen2VLSdpaAttention, | |
} | |
class Qwen2VLDecoderLayer(nn.Module): | |
def __init__(self, config: Qwen2VLConfig, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
if config.use_sliding_window and config._attn_implementation != "flash_attention_2": | |
logger.warning_once( | |
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " | |
"unexpected results may be encountered." | |
) | |
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
self.mlp = Qwen2MLP(config) | |
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
kwargs (`dict`, *optional*): | |
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
into the model | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
QWEN2VL_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Qwen2VLConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class Qwen2VLPreTrainedModel(PreTrainedModel): | |
config_class = Qwen2VLConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
_supports_static_cache = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, (nn.Linear, nn.Conv3d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel): | |
config_class = Qwen2VLVisionConfig | |
_no_split_modules = ["Qwen2VLVisionBlock"] | |
def __init__(self, config) -> None: | |
super().__init__(config) | |
self.spatial_merge_size = config.spatial_merge_size | |
self.patch_embed = PatchEmbed( | |
patch_size=config.patch_size, | |
temporal_patch_size=config.temporal_patch_size, | |
in_channels=config.in_channels, | |
embed_dim=config.embed_dim, | |
) | |
head_dim = config.embed_dim // config.num_heads | |
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) | |
self.blocks = nn.ModuleList( | |
[Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)] | |
) | |
self.merger = PatchMerger(dim=config.hidden_size, context_dim=config.embed_dim) | |
def get_dtype(self) -> torch.dtype: | |
return self.blocks[0].mlp.fc2.weight.dtype | |
def get_device(self) -> torch.device: | |
return self.blocks[0].mlp.fc2.weight.device | |
def rot_pos_emb(self, grid_thw): | |
pos_ids = [] | |
for t, h, w in grid_thw: | |
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) | |
hpos_ids = hpos_ids.reshape( | |
h // self.spatial_merge_size, | |
self.spatial_merge_size, | |
w // self.spatial_merge_size, | |
self.spatial_merge_size, | |
) | |
hpos_ids = hpos_ids.permute(0, 2, 1, 3) | |
hpos_ids = hpos_ids.flatten() | |
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) | |
wpos_ids = wpos_ids.reshape( | |
h // self.spatial_merge_size, | |
self.spatial_merge_size, | |
w // self.spatial_merge_size, | |
self.spatial_merge_size, | |
) | |
wpos_ids = wpos_ids.permute(0, 2, 1, 3) | |
wpos_ids = wpos_ids.flatten() | |
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) | |
pos_ids = torch.cat(pos_ids, dim=0) | |
max_grid_size = grid_thw[:, 1:].max() | |
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) | |
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) | |
return rotary_pos_emb | |
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.patch_embed(hidden_states) | |
rotary_pos_emb = self.rot_pos_emb(grid_thw) | |
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( | |
dim=0, dtype=torch.int32 | |
) | |
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) | |
for blk in self.blocks: | |
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) | |
return self.merger(hidden_states) | |
class Qwen2VLModel(Qwen2VLPreTrainedModel): | |
def __init__(self, config: Qwen2VLConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.layers = nn.ModuleList( | |
[Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self._attn_implementation = config._attn_implementation | |
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if cache_position is None: | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
cache_position = torch.arange( | |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
) | |
if position_ids is None: | |
# the hard coded `3` is for temporal, height and width. | |
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1) | |
causal_mask = self._update_causal_mask( | |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
causal_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
cache_position, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=causal_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
if using_static_cache: | |
target_length = past_key_values.get_max_length() | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=target_length, | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=input_tensor.shape[0], | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |
QWEN2_VL_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)): | |
The tensors corresponding to the input images. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses | |
[`Qwen2VLImageProcessor`] for processing images. | |
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)): | |
The tensors corresponding to the input videos. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`Qwen2VLImageProcessor.__call__`] for details. [`Qwen2VLProcessor`] uses | |
[`Qwen2VLImageProcessor`] for processing videos. | |
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | |
The temporal, height and width of feature shape of each image in LLM. | |
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | |
The temporal, height and width of feature shape of each video in LLM. | |
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*): | |
The rope index difference between sequence length and multimodal rope. | |
""" | |
class Qwen2VLForConditionalGeneration(Qwen2VLPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.visual = Qwen2VisionTransformerPretrainedModel._from_config( | |
config.vision_config, attn_implementation=config._attn_implementation | |
) | |
self.model = Qwen2VLModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def get_rope_index( | |
self, | |
input_ids: torch.LongTensor, | |
image_grid_thw: Optional[torch.LongTensor] = None, | |
video_grid_thw: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Calculate the 3D rope index based on image and video's temporal, height and width in LLM. | |
Explanation: | |
Each embedding sequence contains vision embedding and text embedding or just contains text embedding. | |
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs. | |
Examples: | |
input_ids: [T T T T T], here T is for text. | |
temporal position_ids: [0, 1, 2, 3, 4] | |
height position_ids: [0, 1, 2, 3, 4] | |
width position_ids: [0, 1, 2, 3, 4] | |
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part | |
and 1D rotary position embeddin for text part. | |
Examples: | |
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches. | |
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. | |
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] | |
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] | |
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] | |
text temporal position_ids: [3, 4, 5, 6, 7] | |
text height position_ids: [3, 4, 5, 6, 7] | |
text width position_ids: [3, 4, 5, 6, 7] | |
Here we calculate the text start position_ids as the max vision position_ids plus 1. | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | |
The temporal, height and width of feature shape of each image in LLM. | |
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | |
The temporal, height and width of feature shape of each video in LLM. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
Returns: | |
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) | |
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) | |
""" | |
spatial_merge_size = self.config.vision_config.spatial_merge_size | |
image_token_id = self.config.image_token_id | |
video_token_id = self.config.video_token_id | |
vision_start_token_id = self.config.vision_start_token_id | |
mrope_position_deltas = [] | |
if image_grid_thw is not None or video_grid_thw is not None: | |
total_input_ids = input_ids | |
position_ids = torch.ones( | |
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device | |
) | |
image_index, video_index = 0, 0 | |
for i, input_ids in enumerate(total_input_ids): | |
if attention_mask is not None: | |
input_ids = input_ids[attention_mask[i] == 1] | |
image_nums, video_nums = 0, 0 | |
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) | |
vision_tokens = input_ids[vision_start_indices + 1] | |
image_nums = (vision_tokens == image_token_id).sum() | |
video_nums = (vision_tokens == video_token_id).sum() | |
input_tokens = input_ids.tolist() | |
llm_pos_ids_list: list = [] | |
st = 0 | |
remain_images, remain_videos = image_nums, video_nums | |
for _ in range(image_nums + video_nums): | |
if image_token_id in input_tokens and remain_images > 0: | |
ed_image = input_tokens.index(image_token_id, st) | |
else: | |
ed_image = len(input_tokens) + 1 | |
if video_token_id in input_tokens and remain_videos > 0: | |
ed_video = input_tokens.index(video_token_id, st) | |
else: | |
ed_video = len(input_tokens) + 1 | |
if ed_image < ed_video: | |
t, h, w = ( | |
image_grid_thw[image_index][0], | |
image_grid_thw[image_index][1], | |
image_grid_thw[image_index][2], | |
) | |
image_index += 1 | |
remain_images -= 1 | |
ed = ed_image | |
else: | |
t, h, w = ( | |
video_grid_thw[video_index][0], | |
video_grid_thw[video_index][1], | |
video_grid_thw[video_index][2], | |
) | |
video_index += 1 | |
remain_videos -= 1 | |
ed = ed_video | |
llm_grid_t, llm_grid_h, llm_grid_w = ( | |
t.item(), | |
h.item() // spatial_merge_size, | |
w.item() // spatial_merge_size, | |
) | |
text_len = ed - st | |
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | |
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | |
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() | |
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() | |
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() | |
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) | |
st = ed + llm_grid_t * llm_grid_h * llm_grid_w | |
if st < len(input_tokens): | |
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | |
text_len = len(input_tokens) - st | |
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | |
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) | |
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) | |
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) | |
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) | |
return position_ids, mrope_position_deltas | |
else: | |
if attention_mask is not None: | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device) | |
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] | |
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] | |
else: | |
position_ids = ( | |
torch.arange(input_ids.shape[1], device=input_ids.device) | |
.view(1, 1, -1) | |
.expand(3, input_ids.shape[0], -1) | |
) | |
mrope_position_deltas = torch.zeros( | |
[input_ids.shape[0], 1], | |
device=input_ids.device, | |
dtype=input_ids.dtype, | |
) | |
return position_ids, mrope_position_deltas | |
def _update_model_kwargs_for_generation( | |
self, | |
outputs: ModelOutput, | |
model_kwargs: Dict[str, Any], | |
is_encoder_decoder: bool = False, | |
num_new_tokens: int = 1, | |
) -> Dict[str, Any]: | |
model_kwargs = super()._update_model_kwargs_for_generation( | |
outputs=outputs, | |
model_kwargs=model_kwargs, | |
is_encoder_decoder=is_encoder_decoder, | |
num_new_tokens=num_new_tokens, | |
) | |
if getattr(outputs, "rope_deltas", None) is not None: | |
model_kwargs["rope_deltas"] = outputs.rope_deltas | |
return model_kwargs | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
pixel_values: Optional[torch.Tensor] = None, | |
pixel_values_videos: Optional[torch.FloatTensor] = None, | |
image_grid_thw: Optional[torch.LongTensor] = None, | |
video_grid_thw: Optional[torch.LongTensor] = None, | |
rope_deltas: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
>>> messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image"}, | |
{"type": "text", "text": "What is shown in this image?"}, | |
], | |
}, | |
] | |
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos]) | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..." | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if inputs_embeds is None: | |
inputs_embeds = self.model.embed_tokens(input_ids) | |
if pixel_values is not None: | |
pixel_values = pixel_values.type(self.visual.get_dtype()) | |
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device) | |
image_mask = input_ids == self.config.image_token_id | |
if self.training: | |
inputs_embeds = inputs_embeds.clone() | |
inputs_embeds[image_mask] = image_embeds | |
if pixel_values_videos is not None: | |
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype()) | |
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device) | |
video_mask = input_ids == self.config.video_token_id | |
inputs_embeds[video_mask] = video_embeds | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(inputs_embeds.device) | |
outputs = self.model( | |
input_ids=None, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return Qwen2VLCausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
rope_deltas=rope_deltas, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
cache_position=None, | |
position_ids=None, | |
use_cache=True, | |
pixel_values=None, | |
pixel_values_videos=None, | |
image_grid_thw=None, | |
video_grid_thw=None, | |
**kwargs, | |
): | |
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens | |
# Exception 1: when passing input_embeds, input_ids may be missing entries | |
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here | |
if past_key_values is not None: | |
if inputs_embeds is not None: # Exception 1 | |
input_ids = input_ids[:, -cache_position.shape[0] :] | |
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) | |
input_ids = input_ids[:, cache_position] | |
rope_deltas = kwargs.get("rope_deltas", None) | |
if attention_mask is not None and position_ids is None: | |
if cache_position is None or (cache_position is not None and cache_position[0] == 0): | |
position_ids, rope_deltas = self.get_rope_index( | |
input_ids, image_grid_thw, video_grid_thw, attention_mask | |
) | |
else: | |
batch_size, seq_length = input_ids.shape | |
delta = ( | |
cache_position[0] + rope_deltas if cache_position is not None and rope_deltas is not None else 0 | |
) | |
position_ids = torch.arange(seq_length, device=input_ids.device) | |
position_ids = position_ids.view(1, -1).expand(batch_size, -1) | |
position_ids = position_ids.add(delta) | |
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) | |
if cache_position[0] != 0: | |
pixel_values = None | |
pixel_values_videos = None | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and cache_position[0] == 0: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | |
if inputs_embeds is not None: | |
batch_size, sequence_length = inputs_embeds.shape | |
device = inputs_embeds.device | |
else: | |
batch_size, sequence_length = input_ids.shape | |
device = input_ids.device | |
dtype = self.lm_head.weight.dtype | |
min_dtype = torch.finfo(dtype).min | |
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=past_key_values.get_max_length(), | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=batch_size, | |
) | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": use_cache, | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"pixel_values_videos": pixel_values_videos, | |
"image_grid_thw": image_grid_thw, | |
"video_grid_thw": video_grid_thw, | |
"rope_deltas": rope_deltas, | |
} | |
) | |
return model_inputs | |
class Qwen2VLSimplifiedModel(Qwen2VLPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.visual = Qwen2VisionTransformerPretrainedModel._from_config( | |
config.vision_config, attn_implementation=config._attn_implementation | |
) | |
self.model = Qwen2VLModel(config) | |
self.hidden_size = config.hidden_size | |
# 初始化权重 | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder=False, num_new_tokens=1): | |
# 移除生成相关的更新逻辑 | |
return model_kwargs | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
pixel_values: Optional[torch.Tensor] = None, | |
pixel_values_videos: Optional[torch.FloatTensor] = None, | |
image_grid_thw: Optional[torch.LongTensor] = None, | |
video_grid_thw: Optional[torch.LongTensor] = None | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if inputs_embeds is None: | |
inputs_embeds = self.model.embed_tokens(input_ids) | |
if pixel_values is not None: | |
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device) | |
image_mask = input_ids == self.config.image_token_id | |
inputs_embeds[image_mask] = image_embeds | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(inputs_embeds.device) | |
if position_ids is None: | |
position_ids, _ = self.get_rope_index(input_ids, image_grid_thw, video_grid_thw, attention_mask) | |
outputs = self.model( | |
input_ids=None, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
return hidden_states, image_mask, image_grid_thw | |
def get_rope_index( | |
self, | |
input_ids: torch.LongTensor, | |
image_grid_thw: Optional[torch.LongTensor] = None, | |
video_grid_thw: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Calculate the 3D rope index based on image and video's temporal, height and width in LLM. | |
Explanation: | |
Each embedding sequence contains vision embedding and text embedding or just contains text embedding. | |
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs. | |
Examples: | |
input_ids: [T T T T T], here T is for text. | |
temporal position_ids: [0, 1, 2, 3, 4] | |
height position_ids: [0, 1, 2, 3, 4] | |
width position_ids: [0, 1, 2, 3, 4] | |
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part | |
and 1D rotary position embeddin for text part. | |
Examples: | |
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches. | |
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision. | |
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] | |
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] | |
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] | |
text temporal position_ids: [3, 4, 5, 6, 7] | |
text height position_ids: [3, 4, 5, 6, 7] | |
text width position_ids: [3, 4, 5, 6, 7] | |
Here we calculate the text start position_ids as the max vision position_ids plus 1. | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*): | |
The temporal, height and width of feature shape of each image in LLM. | |
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): | |
The temporal, height and width of feature shape of each video in LLM. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
Returns: | |
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`) | |
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`) | |
""" | |
spatial_merge_size = self.config.vision_config.spatial_merge_size | |
image_token_id = self.config.image_token_id | |
video_token_id = self.config.video_token_id | |
vision_start_token_id = self.config.vision_start_token_id | |
mrope_position_deltas = [] | |
if image_grid_thw is not None or video_grid_thw is not None: | |
total_input_ids = input_ids | |
position_ids = torch.ones( | |
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device | |
) | |
image_index, video_index = 0, 0 | |
for i, input_ids in enumerate(total_input_ids): | |
if attention_mask is not None: | |
input_ids = input_ids[attention_mask[i] == 1] | |
image_nums, video_nums = 0, 0 | |
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1) | |
vision_tokens = input_ids[vision_start_indices + 1] | |
image_nums = (vision_tokens == image_token_id).sum() | |
video_nums = (vision_tokens == video_token_id).sum() | |
input_tokens = input_ids.tolist() | |
llm_pos_ids_list: list = [] | |
st = 0 | |
remain_images, remain_videos = image_nums, video_nums | |
for _ in range(image_nums + video_nums): | |
if image_token_id in input_tokens and remain_images > 0: | |
ed_image = input_tokens.index(image_token_id, st) | |
else: | |
ed_image = len(input_tokens) + 1 | |
if video_token_id in input_tokens and remain_videos > 0: | |
ed_video = input_tokens.index(video_token_id, st) | |
else: | |
ed_video = len(input_tokens) + 1 | |
if ed_image < ed_video: | |
t, h, w = ( | |
image_grid_thw[image_index][0], | |
image_grid_thw[image_index][1], | |
image_grid_thw[image_index][2], | |
) | |
image_index += 1 | |
remain_images -= 1 | |
ed = ed_image | |
else: | |
t, h, w = ( | |
video_grid_thw[video_index][0], | |
video_grid_thw[video_index][1], | |
video_grid_thw[video_index][2], | |
) | |
video_index += 1 | |
remain_videos -= 1 | |
ed = ed_video | |
llm_grid_t, llm_grid_h, llm_grid_w = ( | |
t.item(), | |
h.item() // spatial_merge_size, | |
w.item() // spatial_merge_size, | |
) | |
text_len = ed - st | |
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | |
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | |
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() | |
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() | |
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() | |
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx) | |
st = ed + llm_grid_t * llm_grid_h * llm_grid_w | |
if st < len(input_tokens): | |
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 | |
text_len = len(input_tokens) - st | |
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx) | |
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1) | |
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device) | |
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i])) | |
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1) | |
return position_ids, mrope_position_deltas | |
else: | |
if attention_mask is not None: | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device) | |
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0] | |
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1] | |
else: | |
position_ids = ( | |
torch.arange(input_ids.shape[1], device=input_ids.device) | |
.view(1, 1, -1) | |
.expand(3, input_ids.shape[0], -1) | |
) | |
mrope_position_deltas = torch.zeros( | |
[input_ids.shape[0], 1], | |
device=input_ids.device, | |
dtype=input_ids.dtype, | |
) | |
return position_ids, mrope_position_deltas | |