## import gradio as gr # ## def greet(name): ## return "Hello " + name + "!!" # ## iface = gr.Interface(fn=greet, inputs="text", outputs="text") ## iface.launch() import gradio as gr from fastai.vision.all import * import skimage import pathlib temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath pathlib.PosixPath = temp learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Female/Male Classifier" description = "A Female/Male classifier trained on the duckduckgo search result with fastai. Created as a demo for Gradio and HuggingFace Spaces." ## article="
" examples = ['femaleDefault.jpg', 'maleDefault.jpg', 'dragQueen1.jpg', 'dragQueen2.jpg', 'femaleAngry1.jpg', 'femaleAngry2.jpg', 'femaleMuscle1.jpg', 'femaleMuscle2.jpg', 'maleAsian.jpg', 'maleEurope.jpg', 'femaleAsian.jpg', 'femaleDefault.jpg', 'maleCrying2.jpg', 'maleCrying2No.jpg'] #interpretation='default' enable_queue=True # ## gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() # inter = gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(), title=title, description=description, examples=examples, cache_examples=True, examples_per_page=2) inter.queue() inter.launch()