import gradio as gr from fastai.vision.all import * import pathlib # Adjust the path handling for compatibility between different OS temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath pathlib.PosixPath = temp # Load your pre-trained model learn = load_learner('model.pkl') labels = learn.dls.vocab # Prediction function def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Title and description title = "Female/Male Classifier" description = "A Female/Male classifier trained By Dr chamyoung." # Ensure the correct path is given to your example images examples = ['ChoeSuncha.png', 'IMG_5359.jpg'] # Update the Gradio Interface inter = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(), title=title, description=description, examples=examples, # Make sure the images are correctly referenced cache_examples=False, # Disable example caching examples_per_page=2 ) inter.queue() inter.launch()