Spaces:
Sleeping
Sleeping
File size: 16,225 Bytes
e47ecb8 1ea42dc c51a1c9 1ea42dc e47ecb8 c51a1c9 1ea42dc c51a1c9 e47ecb8 1ea42dc c51a1c9 e47ecb8 c51a1c9 e47ecb8 1ea42dc e47ecb8 1ea42dc c51a1c9 1ea42dc c51a1c9 1ea42dc c51a1c9 1ea42dc 6481a43 1ea42dc c51a1c9 1ea42dc c51a1c9 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 209f9d6 c51a1c9 e47ecb8 209f9d6 e47ecb8 209f9d6 e47ecb8 c51a1c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import random
import PIL
import numpy as np
class MIDITokenizer:
def __init__(self):
self.vocab_size = 0
def allocate_ids(size):
ids = [self.vocab_size + i for i in range(size)]
self.vocab_size += size
return ids
self.pad_id = allocate_ids(1)[0]
self.bos_id = allocate_ids(1)[0]
self.eos_id = allocate_ids(1)[0]
self.events = {
"note": ["time1", "time2", "track", "duration", "channel", "pitch", "velocity"],
"patch_change": ["time1", "time2", "track", "channel", "patch"],
"control_change": ["time1", "time2", "track", "channel", "controller", "value"],
"set_tempo": ["time1", "time2", "track", "bpm"],
}
self.event_parameters = {
"time1": 128, "time2": 16, "duration": 2048, "track": 128, "channel": 16, "pitch": 128, "velocity": 128,
"patch": 128, "controller": 128, "value": 128, "bpm": 256
}
self.event_ids = {e: allocate_ids(1)[0] for e in self.events.keys()}
self.id_events = {i: e for e, i in self.event_ids.items()}
self.parameter_ids = {p: allocate_ids(s) for p, s in self.event_parameters.items()}
self.max_token_seq = max([len(ps) for ps in self.events.values()]) + 1
def tempo2bpm(self, tempo):
tempo = tempo / 10 ** 6 # us to s
bpm = 60 / tempo
return bpm
def bpm2tempo(self, bpm):
if bpm == 0:
bpm = 1
tempo = int((60 / bpm) * 10 ** 6)
return tempo
def tokenize(self, midi_score, add_bos_eos=True, cc_eps=4, tempo_eps=4):
ticks_per_beat = midi_score[0]
event_list = {}
for track_idx, track in enumerate(midi_score[1:129]):
last_notes = {}
patch_dict = {}
control_dict = {}
last_tempo = 0
for event in track:
if event[0] not in self.events:
continue
t = round(16 * event[1] / ticks_per_beat) # quantization
new_event = [event[0], t // 16, t % 16, track_idx] + event[2:]
if event[0] == "note":
new_event[4] = max(1, round(16 * new_event[4] / ticks_per_beat))
elif event[0] == "set_tempo":
if new_event[4] == 0: # invalid tempo
continue
bpm = int(self.tempo2bpm(new_event[4]))
new_event[4] = min(bpm, 255)
if event[0] == "note":
key = tuple(new_event[:4] + new_event[5:-1])
else:
key = tuple(new_event[:-1])
if event[0] == "patch_change":
c, p = event[2:]
last_p = patch_dict.setdefault(c, None)
if last_p == p:
continue
patch_dict[c] = p
elif event[0] == "control_change":
c, cc, v = event[2:]
last_v = control_dict.setdefault((c, cc), 0)
if abs(last_v - v) < cc_eps:
continue
control_dict[(c, cc)] = v
elif event[0] == "set_tempo":
tempo = new_event[-1]
if abs(last_tempo - tempo) < tempo_eps:
continue
last_tempo = tempo
if event[0] == "note": # to eliminate note overlap due to quantization
cp = tuple(new_event[5:7])
if cp in last_notes:
last_note_key, last_note = last_notes[cp]
last_t = last_note[1] * 16 + last_note[2]
last_note[4] = max(0, min(last_note[4], t - last_t))
if last_note[4] == 0:
event_list.pop(last_note_key)
last_notes[cp] = (key, new_event)
event_list[key] = new_event
event_list = list(event_list.values())
event_list = sorted(event_list, key=lambda e: e[1:4])
midi_seq = []
setup_events = {}
notes_in_setup = False
for i, event in enumerate(event_list): # optimise setup
new_event = [*event]
if event[0] != "note":
new_event[1] = 0
new_event[2] = 0
has_next = False
has_pre = False
if i < len(event_list) - 1:
next_event = event_list[i + 1]
has_next = event[1] + event[2] == next_event[1] + next_event[2]
if notes_in_setup and i > 0:
pre_event = event_list[i - 1]
has_pre = event[1] + event[2] == pre_event[1] + pre_event[2]
if (event[0] == "note" and not has_next) or (notes_in_setup and not has_pre) :
event_list = sorted(setup_events.values(), key=lambda e: 1 if e[0] == "note" else 0) + event_list[i:]
break
else:
if event[0] == "note":
notes_in_setup = True
key = tuple(event[3:-1])
setup_events[key] = new_event
last_t1 = 0
for event in event_list:
cur_t1 = event[1]
event[1] = event[1] - last_t1
tokens = self.event2tokens(event)
if not tokens:
continue
midi_seq.append(tokens)
last_t1 = cur_t1
if add_bos_eos:
bos = [self.bos_id] + [self.pad_id] * (self.max_token_seq - 1)
eos = [self.eos_id] + [self.pad_id] * (self.max_token_seq - 1)
midi_seq = [bos] + midi_seq + [eos]
return midi_seq
def event2tokens(self, event):
name = event[0]
params = event[1:]
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]):
return []
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]]
for i, p in enumerate(self.events[name])]
tokens += [self.pad_id] * (self.max_token_seq - len(tokens))
return tokens
def tokens2event(self, tokens):
if tokens[0] in self.id_events:
name = self.id_events[tokens[0]]
if len(tokens) <= len(self.events[name]):
return []
params = tokens[1:]
params = [params[i] - self.parameter_ids[p][0] for i, p in enumerate(self.events[name])]
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]):
return []
event = [name] + params
return event
return []
def detokenize(self, midi_seq):
ticks_per_beat = 480
tracks_dict = {}
t1 = 0
for tokens in midi_seq:
if tokens[0] in self.id_events:
event = self.tokens2event(tokens)
if not event:
continue
name = event[0]
if name == "set_tempo":
event[4] = self.bpm2tempo(event[4])
if event[0] == "note":
event[4] = int(event[4] * ticks_per_beat / 16)
t1 += event[1]
t = t1 * 16 + event[2]
t = int(t * ticks_per_beat / 16)
track_idx = event[3]
if track_idx not in tracks_dict:
tracks_dict[track_idx] = []
tracks_dict[track_idx].append([event[0], t] + event[4:])
tracks = list(tracks_dict.values())
for i in range(len(tracks)): # to eliminate note overlap
track = tracks[i]
track = sorted(track, key=lambda e: e[1])
last_note_t = {}
zero_len_notes = []
for e in reversed(track):
if e[0] == "note":
t, d, c, p = e[1:5]
key = (c, p)
if key in last_note_t:
d = min(d, max(last_note_t[key] - t, 0))
last_note_t[key] = t
e[2] = d
if d == 0:
zero_len_notes.append(e)
for e in zero_len_notes:
track.remove(e)
tracks[i] = track
return [ticks_per_beat, *tracks]
def midi2img(self, midi_score):
ticks_per_beat = midi_score[0]
notes = []
max_time = 1
track_num = len(midi_score[1:])
for track_idx, track in enumerate(midi_score[1:]):
for event in track:
t = round(16 * event[1] / ticks_per_beat)
if event[0] == "note":
d = max(1, round(16 * event[2] / ticks_per_beat))
c, p = event[3:5]
max_time = max(max_time, t + d + 1)
notes.append((track_idx, c, p, t, d))
img = np.zeros((128, max_time, 3), dtype=np.uint8)
colors = {(i, j): np.random.randint(50, 256, 3) for i in range(track_num) for j in range(16)}
for note in notes:
tr, c, p, t, d = note
img[p, t: t + d] = colors[(tr, c)]
img = PIL.Image.fromarray(np.flip(img, 0))
return img
def augment(self, midi_seq, max_pitch_shift=4, max_vel_shift=10, max_cc_val_shift=10, max_bpm_shift=10,
max_track_shift=0, max_channel_shift=16):
pitch_shift = random.randint(-max_pitch_shift, max_pitch_shift)
vel_shift = random.randint(-max_vel_shift, max_vel_shift)
cc_val_shift = random.randint(-max_cc_val_shift, max_cc_val_shift)
bpm_shift = random.randint(-max_bpm_shift, max_bpm_shift)
track_shift = random.randint(0, max_track_shift)
channel_shift = random.randint(0, max_channel_shift)
midi_seq_new = []
for tokens in midi_seq:
tokens_new = [*tokens]
if tokens[0] in self.id_events:
name = self.id_events[tokens[0]]
for i, pn in enumerate(self.events[name]):
if pn == "track":
tr = tokens[1 + i] - self.parameter_ids[pn][0]
tr += track_shift
tr = tr % self.event_parameters[pn]
tokens_new[1 + i] = self.parameter_ids[pn][tr]
elif pn == "channel":
c = tokens[1 + i] - self.parameter_ids[pn][0]
c0 = c
c += channel_shift
c = c % self.event_parameters[pn]
if c0 == 9:
c = 9
elif c == 9:
c = (9 + channel_shift) % self.event_parameters[pn]
tokens_new[1 + i] = self.parameter_ids[pn][c]
if name == "note":
c = tokens[5] - self.parameter_ids["channel"][0]
p = tokens[6] - self.parameter_ids["pitch"][0]
v = tokens[7] - self.parameter_ids["velocity"][0]
if c != 9: # no shift for drums
p += pitch_shift
if not 0 <= p < 128:
return midi_seq
v += vel_shift
v = max(1, min(127, v))
tokens_new[6] = self.parameter_ids["pitch"][p]
tokens_new[7] = self.parameter_ids["velocity"][v]
elif name == "control_change":
cc = tokens[5] - self.parameter_ids["controller"][0]
val = tokens[6] - self.parameter_ids["value"][0]
if cc in [1, 2, 7, 11]:
val += cc_val_shift
val = max(1, min(127, val))
tokens_new[6] = self.parameter_ids["value"][val]
elif name == "set_tempo":
bpm = tokens[4] - self.parameter_ids["bpm"][0]
bpm += bpm_shift
bpm = max(1, min(255, bpm))
tokens_new[4] = self.parameter_ids["bpm"][bpm]
midi_seq_new.append(tokens_new)
return midi_seq_new
def check_quality(self, midi_seq, alignment_min=0.4, tonality_min=0.8, piano_max=0.7, notes_bandwidth_min=3, notes_density_max=30, notes_density_min=2.5, total_notes_max=10000, total_notes_min=500, note_window_size=16):
total_notes = 0
channels = []
time_hist = [0] * 16
note_windows = {}
notes_sametime = []
notes_density_list = []
tonality_list = []
notes_bandwidth_list = []
instruments = {}
piano_channels = []
undef_instrument = False
abs_t1 = 0
last_t = 0
for tsi, tokens in enumerate(midi_seq):
event = self.tokens2event(tokens)
if not event:
continue
t1, t2, tr = event[1:4]
abs_t1 += t1
t = abs_t1 * 16 + t2
c = None
if event[0] == "note":
d, c, p, v = event[4:]
total_notes += 1
time_hist[t2] += 1
if c != 9: # ignore drum channel
if c not in instruments:
undef_instrument = True
note_windows.setdefault(abs_t1 // note_window_size, []).append(p)
if last_t != t:
notes_sametime = [(et, p_) for et, p_ in notes_sametime if et > last_t]
notes_sametime_p = [p_ for _, p_ in notes_sametime]
if len(notes_sametime) > 0:
notes_bandwidth_list.append(max(notes_sametime_p) - min(notes_sametime_p))
notes_sametime.append((t + d - 1, p))
elif event[0] == "patch_change":
c, p = event[4:]
instruments[c] = p
if p == 0 and c not in piano_channels:
piano_channels.append(c)
if c is not None and c not in channels:
channels.append(c)
last_t = t
reasons = []
if total_notes < total_notes_min:
reasons.append("total_min")
if total_notes > total_notes_max:
reasons.append("total_max")
if undef_instrument:
reasons.append("undef_instr")
if len(note_windows) == 0 and total_notes > 0:
reasons.append("drum_only")
if reasons:
return False, reasons
time_hist = sorted(time_hist, reverse=True)
alignment = sum(time_hist[:2]) / total_notes
for notes in note_windows.values():
key_hist = [0] * 12
for p in notes:
key_hist[p % 12] += 1
key_hist = sorted(key_hist, reverse=True)
tonality_list.append(sum(key_hist[:7]) / len(notes))
notes_density_list.append(len(notes) / note_window_size)
tonality_list = sorted(tonality_list)
tonality = sum(tonality_list)/len(tonality_list)
notes_bandwidth = sum(notes_bandwidth_list)/len(notes_bandwidth_list) if notes_bandwidth_list else 0
notes_density = max(notes_density_list) if notes_density_list else 0
piano_ratio = len(piano_channels) / len(channels)
if len(channels) <=3: # ignore piano threshold if it is a piano solo midi
piano_max = 1
if alignment < alignment_min: # check weather the notes align to the bars (because some midi files are recorded)
reasons.append("alignment")
if tonality < tonality_min: # check whether the music is tonal
reasons.append("tonality")
if notes_bandwidth < notes_bandwidth_min: # check whether music is melodic line only
reasons.append("bandwidth")
if not notes_density_min < notes_density < notes_density_max:
reasons.append("density")
if piano_ratio > piano_max: # check whether most instruments is piano (because some midi files don't have instruments assigned correctly)
reasons.append("piano")
return not reasons, reasons
|