Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,611 Bytes
1ea42dc ff5739c 22dc587 1ea42dc 22dc587 9438ab2 942f170 9438ab2 22dc587 1ea42dc 22dc587 1ea42dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import argparse
import glob
import PIL
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import MIDI
from midi_model import MIDIModel
from midi_tokenizer import MIDITokenizer
from midi_synthesizer import synthesis
from huggingface_hub import hf_hub_download
@torch.inference_mode()
def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
disable_patch_change=False, disable_control_change=False, disable_channels=None, amp=True):
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
else:
prompt = prompt[:, :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
input_tensor = input_tensor.unsqueeze(0)
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
with bar, torch.cuda.amp.autocast(enabled=amp):
while cur_len < max_len:
end = False
hidden = model.forward(input_tensor)[0, -1].unsqueeze(0)
next_token_seq = None
event_name = ""
for i in range(max_token_seq):
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device)
if i == 0:
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
if disable_patch_change:
mask_ids.remove(tokenizer.event_ids["patch_change"])
if disable_control_change:
mask_ids.remove(tokenizer.event_ids["control_change"])
mask[mask_ids] = 1
else:
param_name = tokenizer.events[event_name][i - 1]
mask_ids = tokenizer.parameter_ids[param_name]
if param_name == "channel":
mask_ids = [i for i in mask_ids if i not in disable_channels]
mask[mask_ids] = 1
logits = model.forward_token(hidden, next_token_seq)[:, -1:]
scores = torch.softmax(logits / temp, dim=-1) * mask
sample = model.sample_top_p_k(scores, top_p, top_k)
if i == 0:
next_token_seq = sample
eid = sample.item()
if eid == tokenizer.eos_id:
end = True
break
event_name = tokenizer.id_events[eid]
else:
next_token_seq = torch.cat([next_token_seq, sample], dim=1)
if len(tokenizer.events[event_name]) == i:
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
"constant", value=tokenizer.pad_id)
next_token_seq = next_token_seq.unsqueeze(1)
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
cur_len += 1
bar.update(1)
yield next_token_seq.reshape(-1).cpu().numpy()
if end:
break
def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc, amp):
mid_seq = []
max_len = int(gen_events)
img_len = 1024
img = np.full((128 * 2, img_len, 3), 255, dtype=np.uint8)
state = {"t1": 0, "t": 0, "cur_pos": 0}
rand = np.random.RandomState(0)
colors = {(i, j): rand.randint(0, 200, 3) for i in range(128) for j in range(16)}
def draw_event(tokens):
if tokens[0] in tokenizer.id_events:
name = tokenizer.id_events[tokens[0]]
if len(tokens) <= len(tokenizer.events[name]):
return
params = tokens[1:]
params = [params[i] - tokenizer.parameter_ids[p][0] for i, p in enumerate(tokenizer.events[name])]
if not all([0 <= params[i] < tokenizer.event_parameters[p] for i, p in enumerate(tokenizer.events[name])]):
return
event = [name] + params
state["t1"] += event[1]
t = state["t1"] * 16 + event[2]
state["t"] = t
if name == "note":
tr, d, c, p = event[3:7]
shift = t + d - (state["cur_pos"] + img_len)
if shift > 0:
img[:, :-shift] = img[:, shift:]
img[:, -shift:] = 255
state["cur_pos"] += shift
t = t - state["cur_pos"]
img[p * 2:(p + 1) * 2, t: t + d] = colors[(tr, c)]
def get_img():
t = state["t"] - state["cur_pos"]
img_new = img.copy()
img_new[:, t: t + 2] = 0
return PIL.Image.fromarray(np.flip(img_new, 0))
disable_patch_change = False
disable_channels = None
if tab == 0:
i = 0
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
patches = {}
for instr in instruments:
patches[i] = patch2number[instr]
i = (i + 1) if i != 9 else 10
if drum_kit != "None":
patches[9] = drum_kits2number[drum_kit]
for i, (c, p) in enumerate(patches.items()):
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p]))
mid_seq = mid
mid = np.asarray(mid, dtype=np.int64)
if len(instruments) > 0 or drum_kit != "None":
disable_patch_change = True
disable_channels = [i for i in range(16) if i not in patches]
elif mid is not None:
mid = tokenizer.tokenize(MIDI.midi2score(mid))
mid = np.asarray(mid, dtype=np.int64)
mid = mid[:int(midi_events)]
max_len += len(mid)
for token_seq in mid:
mid_seq.append(token_seq)
draw_event(token_seq)
generator = generate(mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
disable_channels=disable_channels, amp=amp)
for token_seq in generator:
mid_seq.append(token_seq)
draw_event(token_seq)
yield mid_seq, get_img(), None, None
mid = tokenizer.detokenize(mid_seq)
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
audio = synthesis(MIDI.score2opus(mid), soundfont_path)
yield mid_seq, get_img(), "output.mid", (44100, audio)
def cancel_run(mid_seq):
if mid_seq is None:
return None, None
mid = tokenizer.detokenize(mid_seq)
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
audio = synthesis(MIDI.score2opus(mid), soundfont_path)
return "output.mid", (44100, audio)
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
40: "Blush", 48: "Orchestra"}
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
drum_kits2number = {v: k for k, v in number2drum_kits.items()}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--device", type=str, default="cpu", help="device to run model")
parser.add_argument("--max-gen", type=int, default=512, help="max")
soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
model_path = hf_hub_download(repo_id="skytnt/midi-model", filename="model.ckpt")
opt = parser.parse_args()
tokenizer = MIDITokenizer()
model = MIDIModel(tokenizer).to(device=opt.device)
ckpt = torch.load(model_path, map_location="cpu")
state_dict = ckpt.get("state_dict", ckpt)
model.load_state_dict(state_dict, strict=False)
model.eval()
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
"Midi event transformer for music generation\n\n"
"Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
" for faster running")
tab_select = gr.Variable(value=0)
with gr.Tabs():
with gr.TabItem("instrument prompt") as tab1:
input_instruments = gr.Dropdown(label="instruments (auto if empty)", choices=list(patch2number.keys()),
multiselect=True, max_choices=10, type="value")
input_drum_kit = gr.Dropdown(label="drum kit", choices=list(drum_kits2number.keys()), type="value",
value="None")
with gr.TabItem("midi prompt") as tab2:
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
step=1,
value=128)
tab1.select(lambda: 0, None, tab_select, queue=False)
tab2.select(lambda: 1, None, tab_select, queue=False)
input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=opt.max_gen,
step=1, value=opt.max_gen)
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.97)
input_top_k = gr.Slider(label="top k", minimum=1, maximum=50, step=1, value=20)
input_allow_cc = gr.Checkbox(label="allow control change event", value=True)
input_amp = gr.Checkbox(label="enable amp", value=True)
run_btn = gr.Button("generate", variant="primary")
stop_btn = gr.Button("stop")
output_midi_seq = gr.Variable()
output_midi_img = gr.Image(label="output image")
output_midi = gr.File(label="output midi", file_types=[".mid"])
output_audio = gr.Audio(label="output audio", format="mp3")
run_event = run_btn.click(run, [tab_select, input_instruments, input_drum_kit, input_midi, input_midi_events,
input_gen_events, input_temp, input_top_p, input_top_k,
input_allow_cc, input_amp],
[output_midi_seq, output_midi_img, output_midi, output_audio])
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio], cancels=run_event, queue=False)
app.queue(1).launch(server_port=opt.port, share=opt.share)
|