File size: 11,516 Bytes
bf0e217
 
 
d572e10
bf0e217
 
95ac724
bf0e217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f7872
 
 
 
 
95ac724
 
 
 
 
 
 
 
 
 
 
 
 
2481da5
 
 
 
 
 
 
 
 
 
 
 
d572e10
95ac724
 
 
 
 
 
 
 
 
 
 
 
83dc51e
 
95ac724
 
 
 
83dc51e
 
 
 
 
 
 
 
bf0e217
95ac724
83dc51e
 
 
95ac724
83dc51e
 
 
bf0e217
 
83dc51e
bf0e217
 
ff32b52
bf0e217
 
 
 
 
 
 
 
 
 
 
95ac724
bf0e217
95ac724
 
bf0e217
 
 
 
 
 
95ac724
bf0e217
95ac724
 
 
 
 
 
2481da5
 
 
 
95ac724
 
 
 
 
2481da5
 
8e10984
83dc51e
2481da5
 
8e10984
 
 
 
 
 
95ac724
 
8e10984
 
ff32b52
2481da5
ff32b52
 
 
8e10984
 
ff32b52
 
8e10984
 
2481da5
bf0e217
8e10984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import re
from datetime import datetime
import PyPDF2
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer, util
from groq import Groq
import gradio as gr
from docxtpl import DocxTemplate

# Set your API key for Groq
os.environ["GROQ_API_KEY"] = "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"
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# --- PDF/Text Extraction Functions --- #
def extract_text_from_file(file_path):
    """Extracts text from PDF or TXT files based on file extension."""
    if file_path.endswith('.pdf'):
        return extract_text_from_pdf(file_path)
    elif file_path.endswith('.txt'):
        return extract_text_from_txt(file_path)
    else:
        raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")

def extract_text_from_pdf(pdf_file_path):
    """Extracts text from a PDF file."""
    with open(pdf_file_path, 'rb') as pdf_file:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ''.join(page.extract_text() for page in pdf_reader.pages if page.extract_text())
    return text

def extract_text_from_txt(txt_file_path):
    """Extracts text from a .txt file."""
    with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
        return txt_file.read()

# --- Skill Extraction with Llama Model --- #
def extract_skills_llama(text):
    """Extracts skills from the text using the Llama model via Groq API."""
    try:
        response = client.chat.completions.create(
            messages=[{"role": "user", "content": f"Extract skills from the following text: {text}"}],
            model="llama3-70b-8192",
        )
        skills = response.choices[0].message.content.split(', ')  # Expecting a comma-separated list
        return skills
    except Exception as e:
        raise RuntimeError(f"Error during skill extraction: {e}")

# --- Job Description Processing Function --- #
def process_job_description(text):
    """Extracts skills or relevant keywords from the job description."""
    return extract_skills_llama(text)

# --- Qualification and Experience Extraction --- #
def extract_qualifications(text):
    """Extracts qualifications from text (e.g., degrees, certifications)."""
    qualifications = re.findall(r'(bachelor|master|phd|certified|degree)', text, re.IGNORECASE)
    return qualifications if qualifications else ['No specific qualifications found']

def extract_experience(text):
    """Extracts years of experience from the text."""
    experience_years = re.findall(r'(\d+)\s*(years|year) of experience', text, re.IGNORECASE)
    job_titles = re.findall(r'\b(software engineer|developer|manager|analyst)\b', text, re.IGNORECASE)
    experience_years = [int(year[0]) for year in experience_years]
    return experience_years, job_titles

# --- Summarization Function --- #
def summarize_experience(experience_text):
    """Summarizes the experience text using a pre-trained model."""
    model_name = "facebook/bart-large-cnn"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

    inputs = tokenizer(experience_text, return_tensors="pt", max_length=1024, truncation=True)
    summary_ids = model.generate(inputs['input_ids'], max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
    summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return summary

# --- Semantic Similarity Calculation --- #
def calculate_semantic_similarity(text1, text2):
    """Calculates semantic similarity using a sentence transformer model and returns the score as a percentage."""
    model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
    embeddings1 = model.encode(text1, convert_to_tensor=True)
    embeddings2 = model.encode(text2, convert_to_tensor=True)
    similarity_score = util.pytorch_cos_sim(embeddings1, embeddings2).item()
    
    # Convert similarity score to percentage
    similarity_percentage = similarity_score * 100
    return similarity_percentage

# --- Communication Generation with Enhanced Response --- #
def communication_generator(resume_skills, job_description_skills, skills_similarity, qualifications_similarity, experience_similarity, candidate_experience):
    """Generates a detailed communication response based on similarity scores and additional criteria."""
    # Assess candidate fit based on similarity scores
    fit_status = "strong fit" if skills_similarity >= 80 and qualifications_similarity >= 80 and experience_similarity >= 80 else \
                 "moderate fit" if skills_similarity >= 50 else "weak fit"
    
    # Build a message that includes a recommendation based on various assessments
    if fit_status == "strong fit":
        recommendation = "We recommend moving forward with this candidate, as they demonstrate a high level of alignment with the role requirements."
    elif fit_status == "moderate fit":
        recommendation = "This candidate shows potential; however, further assessment or interviews are recommended to clarify their fit for the role."
    else:
        recommendation = "We advise against moving forward with this candidate, as they do not meet the key technical requirements for the position."

    message = (
        f"After a detailed analysis of the candidate's resume, we found the following insights:\n\n"
        f"- **Skills Match**: {skills_similarity:.2f}% (based on required technologies: {', '.join(job_description_skills)})\n"
        f"- **Experience Match**: {experience_similarity:.2f}% (relevant experience: {candidate_experience} years)\n"
        f"- **Qualifications Match**: {qualifications_similarity:.2f}%\n\n"
        f"The overall assessment indicates that the candidate is a {fit_status} for the role. "
        f"Their skills in {', '.join(resume_skills)} align with the job's requirements of {', '.join(job_description_skills)}. "
        f"Based on their experience in web application development, particularly with technologies like {', '.join(resume_skills)}, they could contribute effectively to our team.\n\n"
        f"**Recommendation**: {recommendation}\n"
    )

    return message

# --- Sentiment Analysis --- #
def analyze_sentiment(text):
    """Analyzes the sentiment of the text."""
    model_name = "mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)

    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
        predicted_sentiment = torch.argmax(outputs.logits).item()
    return ["Negative", "Neutral", "Positive"][predicted_sentiment]

# --- Updated Resume Analysis Function --- #
def analyze_resume(resume_file, job_description_file):
    """Analyzes the resume and job description, returning similarity score, skills, qualifications, and experience matching."""
    # Extract resume and job description text
    try:
        resume_text = extract_text_from_file(resume_file.name)
        job_description_text = extract_text_from_file(job_description_file.name)
    except ValueError as ve:
        return str(ve)

    # Extract skills, qualifications, and experience
    resume_skills = extract_skills_llama(resume_text)
    job_description_skills = process_job_description(job_description_text)
    resume_qualifications = extract_qualifications(resume_text)
    job_description_qualifications = extract_qualifications(job_description_text)
    resume_experience, resume_job_titles = extract_experience(resume_text)
    job_description_experience, job_description_titles = extract_experience(job_description_text)

    # Summarize experiences
    resume_experience_summary = summarize_experience(resume_text)
    job_description_experience_summary = summarize_experience(job_description_text)

    # Calculate semantic similarity for different sections in percentages
    skills_similarity = calculate_semantic_similarity(' '.join(resume_skills), ' '.join(job_description_skills))
    qualifications_similarity = calculate_semantic_similarity(' '.join(resume_qualifications), ' '.join(job_description_qualifications))
    experience_similarity = calculate_semantic_similarity(' '.join([str(e) for e in resume_experience]), ' '.join([str(e) for e in job_description_experience]))

    # Assuming candidate experience is the total of years from the resume
    candidate_experience = sum(resume_experience)
    required_experience = sum(job_description_experience)  # This assumes job description contains required experience as years

    # Generate communication based on analysis
    response_message = communication_generator(
        resume_skills,
        job_description_skills,
        skills_similarity,
        qualifications_similarity,
        experience_similarity,
        candidate_experience
    )

    # Analyze sentiment for the resume
    sentiment = analyze_sentiment(resume_text)

    return {
        "skills_similarity": skills_similarity,
        "qualifications_similarity": qualifications_similarity,
        "experience_similarity": experience_similarity,
        "response_message": response_message,
        "sentiment": sentiment,
        "resume_experience_summary": resume_experience_summary,
        "job_description_experience_summary": job_description_experience_summary,
        "resume_skills": resume_skills,
        "job_description_skills": job_description_skills,
    }

# --- Gradio Interface --- #
def gradio_interface():
    """Defines and runs the Gradio interface."""
    with gr.Blocks() as demo:
        gr.Markdown("# Resume Analyzer")
        with gr.Row():
            resume_file = gr.File(label="Upload Resume (PDF/TXT)")
            job_description_file = gr.File(label="Upload Job Description (PDF/TXT)")
            analyze_button = gr.Button("Analyze")

        with gr.Tab("Results"):
            output_message = gr.Textbox(label="Analysis Message", lines=10)
            skills_similarity_output = gr.Number(label="Skills Similarity (%)")
            qualifications_similarity_output = gr.Number(label="Qualifications Similarity (%)")
            experience_similarity_output = gr.Number(label="Experience Similarity (%)")
            sentiment_output = gr.Textbox(label="Sentiment Analysis")
            resume_summary_output = gr.Textbox(label="Resume Experience Summary", lines=5)
            job_description_summary_output = gr.Textbox(label="Job Description Experience Summary", lines=5)
            resume_skills_output = gr.Textbox(label="Resume Skills", lines=5)
            job_description_skills_output = gr.Textbox(label="Job Description Skills", lines=5)

        # Link the button to the analysis function
        analyze_button.click(
            analyze_resume,
            inputs=[resume_file, job_description_file],
            outputs=[
                output_message,
                skills_similarity_output,
                qualifications_similarity_output,
                experience_similarity_output,
                sentiment_output,
                resume_summary_output,
                job_description_summary_output,
                resume_skills_output,
                job_description_skills_output,
            ]
        )

    demo.launch()

# Execute the Gradio interface
gradio_interface()