Spaces:
Sleeping
Sleeping
DreamStream-1
commited on
Commit
•
2080e4d
1
Parent(s):
ebdf65e
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,26 @@ import re
|
|
3 |
from datetime import datetime
|
4 |
import PyPDF2
|
5 |
import torch
|
6 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
-
from groq import Groq
|
9 |
import gradio as gr
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# --- PDF/Text Extraction Functions --- #
|
16 |
def extract_text_from_file(file_path):
|
@@ -23,39 +35,45 @@ def extract_text_from_file(file_path):
|
|
23 |
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
|
24 |
|
25 |
def extract_text_from_pdf(pdf_file_path):
|
26 |
-
"""Extracts text from a PDF file."""
|
|
|
27 |
with open(pdf_file_path, 'rb') as pdf_file:
|
28 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def extract_text_from_txt(txt_file_path):
|
33 |
"""Extracts text from a .txt file."""
|
34 |
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
|
35 |
return txt_file.read()
|
36 |
|
37 |
-
# --- Skill Extraction with
|
38 |
-
def
|
39 |
-
"""Extracts skills from the text using
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
# --- Job Description Processing Function --- #
|
51 |
def process_job_description(text):
|
52 |
"""Extracts skills or relevant keywords from the job description."""
|
53 |
-
return
|
54 |
|
55 |
# --- Qualification and Experience Extraction --- #
|
56 |
def extract_qualifications(text):
|
57 |
"""Extracts qualifications from text (e.g., degrees, certifications)."""
|
58 |
-
qualifications = re.findall(r'(bachelor|master|phd|certified|degree)', text, re.IGNORECASE)
|
59 |
return qualifications if qualifications else ['No specific qualifications found']
|
60 |
|
61 |
def extract_experience(text):
|
@@ -65,121 +83,127 @@ def extract_experience(text):
|
|
65 |
experience_years = [int(year[0]) for year in experience_years]
|
66 |
return experience_years, job_titles
|
67 |
|
68 |
-
# ---
|
69 |
-
def
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
required_experience = sum(job_description_experience) # Assuming total years required
|
88 |
-
|
89 |
-
# Calculate similarity scores
|
90 |
-
skills_similarity = len(set(resume_skills).intersection(set(job_description_skills))) / len(job_description_skills) * 100 if job_description_skills else 0
|
91 |
-
qualifications_similarity = len(set(resume_qualifications).intersection(set(job_description_qualifications))) / len(job_description_qualifications) * 100 if job_description_qualifications else 0
|
92 |
-
experience_similarity = 1.0 if total_experience >= required_experience else 0.0
|
93 |
-
|
94 |
-
# Fit assessment logic
|
95 |
-
fit_score = 0
|
96 |
-
if total_experience >= required_experience:
|
97 |
-
fit_score += 1
|
98 |
-
if skills_similarity > 50: # Define a threshold for skills match
|
99 |
-
fit_score += 1
|
100 |
-
if qualifications_similarity > 50: # Define a threshold for qualifications match
|
101 |
-
fit_score += 1
|
102 |
-
|
103 |
-
# Determine fit
|
104 |
-
if fit_score == 3:
|
105 |
-
fit_assessment = "Strong fit"
|
106 |
-
elif fit_score == 2:
|
107 |
-
fit_assessment = "Moderate fit"
|
108 |
else:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
f"
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
f"
|
129 |
-
f"
|
130 |
-
f"
|
|
|
|
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
f"- **Total Experience:** {total_experience} years\n"
|
136 |
-
f"- **Required Experience:** {required_experience} years\n"
|
137 |
-
)
|
138 |
-
|
139 |
-
return summary_message, skills_message, qualifications_message, experience_message
|
140 |
-
|
141 |
-
|
142 |
-
# --- Gradio Interface --- #
|
143 |
-
def run_gradio_interface():
|
144 |
-
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("## Resume and Job Description Analyzer")
|
146 |
-
resume_file = gr.File(label="Upload Resume")
|
147 |
-
job_description_file = gr.File(label="Upload Job Description")
|
148 |
-
|
149 |
-
# Create placeholders for output messages
|
150 |
-
summary_output = gr.Textbox(label="Summary of Analysis", interactive=False, lines=10)
|
151 |
-
skills_output = gr.Textbox(label="Skills Overview", interactive=False, lines=10)
|
152 |
-
qualifications_output = gr.Textbox(label="Qualifications Overview", interactive=False, lines=10)
|
153 |
-
experience_output = gr.Textbox(label="Experience Overview", interactive=False, lines=10)
|
154 |
|
155 |
-
|
156 |
-
with gr.Tab("Analysis Summary"):
|
157 |
-
gr.Markdown("### Summary of Analysis")
|
158 |
-
summary_output # This automatically renders the output box
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
-
|
|
|
3 |
from datetime import datetime
|
4 |
import PyPDF2
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
|
7 |
from sentence_transformers import SentenceTransformer, util
|
|
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# --- Model Loading with Caching --- #
|
11 |
+
class ModelCache:
|
12 |
+
_tokenizers = {}
|
13 |
+
_models = {}
|
14 |
+
|
15 |
+
@classmethod
|
16 |
+
def get_model(cls, model_name):
|
17 |
+
if model_name not in cls._models:
|
18 |
+
cls._models[model_name] = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
19 |
+
return cls._models[model_name]
|
20 |
+
|
21 |
+
@classmethod
|
22 |
+
def get_tokenizer(cls, model_name):
|
23 |
+
if model_name not in cls._tokenizers:
|
24 |
+
cls._tokenizers[model_name] = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
return cls._tokenizers[model_name]
|
26 |
|
27 |
# --- PDF/Text Extraction Functions --- #
|
28 |
def extract_text_from_file(file_path):
|
|
|
35 |
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
|
36 |
|
37 |
def extract_text_from_pdf(pdf_file_path):
|
38 |
+
"""Extracts text from a PDF file with logging for page extraction."""
|
39 |
+
text = []
|
40 |
with open(pdf_file_path, 'rb') as pdf_file:
|
41 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
42 |
+
for i, page in enumerate(pdf_reader.pages):
|
43 |
+
page_text = page.extract_text()
|
44 |
+
if page_text:
|
45 |
+
text.append(page_text)
|
46 |
+
else:
|
47 |
+
print(f"Warning: Page {i} could not be extracted.")
|
48 |
+
return ''.join(text)
|
49 |
|
50 |
def extract_text_from_txt(txt_file_path):
|
51 |
"""Extracts text from a .txt file."""
|
52 |
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
|
53 |
return txt_file.read()
|
54 |
|
55 |
+
# --- Skill Extraction with Hugging Face --- #
|
56 |
+
def extract_skills_huggingface(text):
|
57 |
+
"""Extracts skills from the text using a Hugging Face model."""
|
58 |
+
model_name = "google/flan-t5-base"
|
59 |
+
tokenizer = ModelCache.get_tokenizer(model_name)
|
60 |
+
model = ModelCache.get_model(model_name)
|
61 |
+
|
62 |
+
input_text = f"Extract skills from the following text: {text}"
|
63 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
64 |
+
outputs = model.generate(**inputs)
|
65 |
+
skills = tokenizer.decode(outputs[0], skip_special_tokens=True).split(', ') # Expecting a comma-separated list
|
66 |
+
return skills
|
67 |
|
68 |
# --- Job Description Processing Function --- #
|
69 |
def process_job_description(text):
|
70 |
"""Extracts skills or relevant keywords from the job description."""
|
71 |
+
return extract_skills_huggingface(text)
|
72 |
|
73 |
# --- Qualification and Experience Extraction --- #
|
74 |
def extract_qualifications(text):
|
75 |
"""Extracts qualifications from text (e.g., degrees, certifications)."""
|
76 |
+
qualifications = re.findall(r'\b(bachelor|master|phd|certified|degree|diploma|qualification|certification)\b', text, re.IGNORECASE)
|
77 |
return qualifications if qualifications else ['No specific qualifications found']
|
78 |
|
79 |
def extract_experience(text):
|
|
|
83 |
experience_years = [int(year[0]) for year in experience_years]
|
84 |
return experience_years, job_titles
|
85 |
|
86 |
+
# --- Semantic Similarity Calculation --- #
|
87 |
+
def calculate_semantic_similarity(text1, text2):
|
88 |
+
"""Calculates semantic similarity using a sentence transformer model and returns the score as a percentage."""
|
89 |
+
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
90 |
+
embeddings1 = model.encode(text1, convert_to_tensor=True)
|
91 |
+
embeddings2 = model.encode(text2, convert_to_tensor=True)
|
92 |
+
similarity_score = util.pytorch_cos_sim(embeddings1, embeddings2).item()
|
93 |
+
|
94 |
+
# Convert similarity score to percentage
|
95 |
+
similarity_percentage = similarity_score * 100
|
96 |
+
return similarity_percentage
|
97 |
+
|
98 |
+
# --- Thresholds --- #
|
99 |
+
def categorize_similarity(score):
|
100 |
+
"""Categorizes the similarity score into thresholds for better insights."""
|
101 |
+
if score >= 80:
|
102 |
+
return "High Match"
|
103 |
+
elif score >= 50:
|
104 |
+
return "Moderate Match"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
else:
|
106 |
+
return "Low Match"
|
107 |
+
|
108 |
+
# --- Communication Generation with Enhanced Response --- #
|
109 |
+
def communication_generator(resume_skills, job_description_skills, skills_similarity, qualifications_similarity, experience_similarity, max_length=200):
|
110 |
+
"""Generates a more detailed communication response based on similarity scores."""
|
111 |
+
model_name = "google/flan-t5-base"
|
112 |
+
tokenizer = ModelCache.get_tokenizer(model_name)
|
113 |
+
model = ModelCache.get_model(model_name)
|
114 |
+
|
115 |
+
# Assess candidate fit based on similarity scores
|
116 |
+
fit_status = "strong fit" if skills_similarity >= 80 and qualifications_similarity >= 80 and experience_similarity >= 80 else \
|
117 |
+
"moderate fit" if skills_similarity >= 50 else "weak fit"
|
118 |
+
|
119 |
+
# Create a detailed communication message based on match levels
|
120 |
+
message = (
|
121 |
+
f"After a detailed analysis of the candidate's resume, we found the following insights:\n\n"
|
122 |
+
f"- **Skills Match**: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})\n"
|
123 |
+
f"- **Qualifications Match**: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})\n"
|
124 |
+
f"- **Experience Match**: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})\n\n"
|
125 |
+
f"The overall assessment indicates that the candidate is a {fit_status} for the role. "
|
126 |
+
f"Skills such as {', '.join(resume_skills)} align {categorize_similarity(skills_similarity).lower()} with the job's requirements of {', '.join(job_description_skills)}. "
|
127 |
+
f"In terms of qualifications and experience, the candidate shows a {categorize_similarity(qualifications_similarity).lower()} match with the role's needs. "
|
128 |
+
f"Based on these findings, we believe the candidate could potentially excel in the role, "
|
129 |
+
f"but additional evaluation or interviews are recommended for further clarification."
|
130 |
)
|
131 |
|
132 |
+
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
|
133 |
+
response = model.generate(**inputs, max_length=max_length, num_beams=4, early_stopping=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
return tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
|
|
|
|
136 |
|
137 |
+
# --- Sentiment Analysis --- #
|
138 |
+
def sentiment_analysis(text):
|
139 |
+
"""Analyzes the sentiment of the text using a Hugging Face model."""
|
140 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
141 |
+
tokenizer = ModelCache.get_tokenizer(model_name)
|
142 |
+
model = ModelCache.get_model(model_name)
|
143 |
|
144 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
145 |
+
with torch.no_grad():
|
146 |
+
outputs = model(**inputs)
|
147 |
+
predicted_sentiment = torch.argmax(outputs.logits).item()
|
148 |
+
return ["Negative", "Neutral", "Positive"][predicted_sentiment]
|
149 |
|
150 |
+
# --- Updated Resume Analysis Function --- #
|
151 |
+
def analyze_resume(resume_file, job_description_file):
|
152 |
+
"""Analyzes the resume and job description, returning similarity score, skills, qualifications, and experience matching."""
|
153 |
+
# Extract resume and job description text
|
154 |
+
try:
|
155 |
+
resume_text = extract_text_from_file(resume_file.name)
|
156 |
+
job_description_text = extract_text_from_file(job_description_file.name)
|
157 |
+
except ValueError as ve:
|
158 |
+
return str(ve)
|
159 |
|
160 |
+
# Extract skills, qualifications, and experience
|
161 |
+
resume_skills = extract_skills_huggingface(resume_text)
|
162 |
+
job_description_skills = process_job_description(job_description_text)
|
163 |
+
resume_qualifications = extract_qualifications(resume_text)
|
164 |
+
job_description_qualifications = extract_qualifications(job_description_text)
|
165 |
+
resume_experience, resume_job_titles = extract_experience(resume_text)
|
166 |
+
job_description_experience, job_description_titles = extract_experience(job_description_text)
|
167 |
+
|
168 |
+
# Calculate semantic similarity for different sections in percentages
|
169 |
+
skills_similarity = calculate_semantic_similarity(' '.join(resume_skills), ' '.join(job_description_skills))
|
170 |
+
qualifications_similarity = calculate_semantic_similarity(' '.join(resume_qualifications), ' '.join(job_description_qualifications))
|
171 |
+
experience_similarity = calculate_semantic_similarity(' '.join([str(e) for e in resume_experience]), ' '.join([str(e) for e in job_description_experience]))
|
172 |
+
|
173 |
+
# Generate a communication response based on the similarity percentages
|
174 |
+
communication_response = communication_generator(
|
175 |
+
resume_skills, job_description_skills,
|
176 |
+
skills_similarity, qualifications_similarity, experience_similarity
|
177 |
+
)
|
178 |
|
179 |
+
# Perform Sentiment Analysis
|
180 |
+
sentiment = sentiment_analysis(resume_text)
|
181 |
+
|
182 |
+
# Return the results including thresholds and percentage scores
|
183 |
+
return (
|
184 |
+
f"Skills Similarity: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})",
|
185 |
+
f"Qualifications Similarity: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})",
|
186 |
+
f"Experience Similarity: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})",
|
187 |
+
communication_response,
|
188 |
+
f"Sentiment Analysis: {sentiment}",
|
189 |
+
f"Resume Skills: {', '.join(resume_skills)}",
|
190 |
+
f"Job Description Skills: {', '.join(job_description_skills)}",
|
191 |
+
f"Resume Qualifications: {', '.join(resume_qualifications)}",
|
192 |
+
f"Job Description Qualifications: {', '.join(job_description_qualifications)}",
|
193 |
+
f"Resume Experience: {', '.join(map(str, resume_experience))} years, Titles: {', '.join(resume_job_titles)}",
|
194 |
+
f"Job Description Experience: {', '.join(map(str, job_description_experience))} years, Titles: {', '.join(job_description_titles)}"
|
195 |
+
)
|
196 |
|
197 |
+
# --- Gradio Interface --- #
|
198 |
+
iface = gr.Interface(
|
199 |
+
fn=analyze_resume,
|
200 |
+
inputs=["file", "file"],
|
201 |
+
outputs=[
|
202 |
+
"text", "text", "text", "text", "text", "text", "text", "text", "text", "text", "text"
|
203 |
+
],
|
204 |
+
title="Resume Analysis Tool",
|
205 |
+
description="Analyze a resume against a job description to evaluate skills, qualifications, experience, and sentiment."
|
206 |
+
)
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
+
iface.launch()
|