File size: 8,823 Bytes
eebc9f2
 
 
 
 
 
318f9b1
eebc9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318f9b1
bee8934
 
 
 
 
 
 
318f9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import PyPDF2
import re
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from groq import Groq
import streamlit as st
from docxtpl import DocxTemplate
from datetime import datetime

# Set your API key
os.environ["GROQ_API_KEY"] = "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"
# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# --- Resume Extraction Functions ---
def extract_text_from_pdf(pdf_file_path):
    """Extracts text from a PDF file."""
    with open(pdf_file_path, 'rb') as pdf_file:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ''
        for page in range(len(pdf_reader.pages)):
            text += pdf_reader.pages[page].extract_text()
    return text

def extract_text_from_txt(txt_file_path):
    """Extracts text from a .txt file."""
    with open(txt_file_path, 'r') as txt_file:
        text = txt_file.read()
    return text

# --- Skill Extraction with Llama Model ---
def extract_skills_llama(text):
    """Extracts skills from the text using the Llama model via Groq API."""
    chat_completion = client.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": f"Extract skills from the following text: {text}",
            }
        ],
        model="llama3-70b-8192",  # Using Llama model
    )
    skills = chat_completion.choices[0].message.content.split(', ')  # Assuming skills are returned as a comma-separated list
    return skills

# --- Job Description Processing ---
def process_job_description(job_description_text):
    """Processes the job description text."""
    # 1. Preprocess the job description text
    job_description_text = preprocess_text(job_description_text)
    # 2. Extract skills from the job description using Llama
    job_description_skills = extract_skills_llama(job_description_text)
    return job_description_skills

# --- Text Preprocessing ---
def preprocess_text(text):
    """Preprocesses text for better analysis."""
    text = text.lower()  # Convert to lowercase
    text = re.sub(r'[^\w\s]', '', text)  # Remove punctuation
    text = re.sub(r'\s+', ' ', text)  # Remove extra whitespace
    return text

# --- Resume Similarity ---
def calculate_resume_similarity(resume_text, job_description_text):
    """Calculates the similarity between the resume and job description using a Hugging Face model."""
    model_name = "cross-encoder/stsb-roberta-base"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    inputs = tokenizer(resume_text, job_description_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
        similarity_score = torch.sigmoid(outputs.logits).item()
    return similarity_score

# --- Communication Generation ---
def communication_generator(message, max_length=100):
    """Generates a communication response based on the input message using a Hugging Face model."""
    model_name = "google/flan-t5-base"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=512)
    response = model.generate(**inputs, max_length=max_length, num_beams=4, early_stopping=True)
    generated_response = tokenizer.batch_decode(response, skip_special_tokens=True)[0]
    return generated_response + " We look forward to getting in touch with you soon!"

# --- Sentiment Analysis ---
def sentiment_model(text):
    """Analyzes the sentiment of the text using a Hugging Face model."""
    model_name = "distilbert-base-uncased-finetuned-sst-3-literal"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
        predicted_class = torch.argmax(outputs.logits).item()
    sentiment_labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
    return sentiment_labels[predicted_class]

# --- Placeholder Functions for Enhancement ---
def enhance_resume(resume_text):
    """Placeholder function for enhancing the resume (you can implement your own logic here)."""
    return resume_text

def enhance_job_description(job_description_text):
    """Placeholder function for enhancing the job description (you can implement your own logic here)."""
    return job_description_text

# --- Resume Analysis Function ---
def analyze_resume(resume_file, job_description_file):
    """Analyzes the resume and job description."""
    if resume_file.name.endswith(('.pdf', '.txt')):
        if resume_file.name.endswith('.pdf'):
            resume_text = extract_text_from_pdf(resume_file.name)
        else:
            resume_text = extract_text_from_txt(resume_file.name)
    else:
        return "Invalid file type. Please upload a PDF or TXT file for the resume."

    if job_description_file.name.endswith('.txt'):
        job_description_text = extract_text_from_txt(job_description_file.name)
    else:
        return "Invalid file type. Please upload a TXT file for the job description."

    job_description_skills = process_job_description(job_description_text)
    resume_skills = extract_skills_llama(resume_text)
    similarity_score = calculate_resume_similarity(resume_text, job_description_text)
    communication_response = communication_generator(f"I am reviewing a resume for a {job_description_text} position. The candidate has the following skills: {', '.join(resume_skills)}")
    sentiment = sentiment_model(resume_text)
    enhanced_resume = enhance_resume(resume_text)
    enhanced_job_description = enhance_job_description(job_description_text)

    return (
        f"## Resume and Job Description Analysis",
        f"**Similarity Score:** {similarity_score:.2f}",
        f"**Communication Response:** {communication_response}",
        f"**Sentiment:** {sentiment}",
        f"**Resume Skills:** {', '.join(resume_skills)}",
        f"**Job Description Skills:** {', '.join(job_description_skills)}",
        f"**Enhanced Resume:**\n{enhanced_resume}",
        f"**Enhanced Job Description:**\n{enhanced_job_description}",
    )

# --- Offer Letter Generation ---
def generate_offer_letter(template_file, candidate_name, role, start_date, hours):
    """Generates an offer letter."""
    # Parse the start date string
    try:
        start_date = datetime.strptime(start_date, "%Y-%m-%d").strftime("%B %d, %Y")  # Format for DocxTemplate
    except ValueError:
        return "Invalid date format. Please use YYYY-MM-DD."

    # Define the context variables
    context = {
        'candidate_name': candidate_name,
        'role': role,
        'start_date': start_date,
        'hours': hours,
    }

    # Load the template document and render it with the context variables
    tpl = DocxTemplate(template_file.name)
    tpl.render(context)

    # Save the generated document
    script_dir = os.path.dirname(os.path.abspath(__file__))
    docx_file_path = os.path.join(script_dir, f"{candidate_name}_offer_letter.docx")
    tpl.save(docx_file_path)

    # Return the file object
    return open(docx_file_path, 'rb')

# --- Streamlit Interface ---
st.set_page_config(
    page_title="HR Assistant",
    page_icon=":robot:",
    layout="wide",
    initial_sidebar_state="expanded",
)

st.title("HR Assistant")

tab1, tab2 = st.tabs(["Resume Analyzer", "Offer Letter Generator"])

with tab1:
    st.header("Resume and Job Description Analyzer")
    resume_file = st.file_uploader("Upload Resume (PDF or TXT)", type=['pdf', 'txt'])
    job_description_file = st.file_uploader("Upload Job Description (TXT)", type=['txt'])

    if resume_file is not None and job_description_file is not None:
        analysis_results = analyze_resume(resume_file, job_description_file)
        for result in analysis_results:
            st.markdown(result)

with tab2:
    st.header("Offer Letter Generator")
    template_file = st.file_uploader("Upload Offer Letter Template (DOCX)", type=['docx'])
    candidate_name = st.text_input("Candidate Name")
    role = st.text_input("Role")
    start_date = st.text_input("Start Date (YYYY-MM-DD)")
    hours = st.number_input("Hours per Week")

    if template_file is not None and candidate_name and role and start_date and hours:
        offer_letter = generate_offer_letter(template_file, candidate_name, role, start_date, hours)
        st.download_button("Download Offer Letter", offer_letter, file_name=f"{candidate_name}_offer_letter.docx")