HR-Assistant-1 / app.py
Muhammad Salman Akbar
Update app.py
bee8934 verified
import os
import PyPDF2
import re
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from groq import Groq
import streamlit as st
from docxtpl import DocxTemplate
from datetime import datetime
# Set your API key
os.environ["GROQ_API_KEY"] = "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"
# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# --- Resume Extraction Functions ---
def extract_text_from_pdf(pdf_file_path):
"""Extracts text from a PDF file."""
with open(pdf_file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ''
for page in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page].extract_text()
return text
def extract_text_from_txt(txt_file_path):
"""Extracts text from a .txt file."""
with open(txt_file_path, 'r') as txt_file:
text = txt_file.read()
return text
# --- Skill Extraction with Llama Model ---
def extract_skills_llama(text):
"""Extracts skills from the text using the Llama model via Groq API."""
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"Extract skills from the following text: {text}",
}
],
model="llama3-70b-8192", # Using Llama model
)
skills = chat_completion.choices[0].message.content.split(', ') # Assuming skills are returned as a comma-separated list
return skills
# --- Job Description Processing ---
def process_job_description(job_description_text):
"""Processes the job description text."""
# 1. Preprocess the job description text
job_description_text = preprocess_text(job_description_text)
# 2. Extract skills from the job description using Llama
job_description_skills = extract_skills_llama(job_description_text)
return job_description_skills
# --- Text Preprocessing ---
def preprocess_text(text):
"""Preprocesses text for better analysis."""
text = text.lower() # Convert to lowercase
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
text = re.sub(r'\s+', ' ', text) # Remove extra whitespace
return text
# --- Resume Similarity ---
def calculate_resume_similarity(resume_text, job_description_text):
"""Calculates the similarity between the resume and job description using a Hugging Face model."""
model_name = "cross-encoder/stsb-roberta-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer(resume_text, job_description_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
similarity_score = torch.sigmoid(outputs.logits).item()
return similarity_score
# --- Communication Generation ---
def communication_generator(message, max_length=100):
"""Generates a communication response based on the input message using a Hugging Face model."""
model_name = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=512)
response = model.generate(**inputs, max_length=max_length, num_beams=4, early_stopping=True)
generated_response = tokenizer.batch_decode(response, skip_special_tokens=True)[0]
return generated_response + " We look forward to getting in touch with you soon!"
# --- Sentiment Analysis ---
def sentiment_model(text):
"""Analyzes the sentiment of the text using a Hugging Face model."""
model_name = "distilbert-base-uncased-finetuned-sst-3-literal"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits).item()
sentiment_labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
return sentiment_labels[predicted_class]
# --- Placeholder Functions for Enhancement ---
def enhance_resume(resume_text):
"""Placeholder function for enhancing the resume (you can implement your own logic here)."""
return resume_text
def enhance_job_description(job_description_text):
"""Placeholder function for enhancing the job description (you can implement your own logic here)."""
return job_description_text
# --- Resume Analysis Function ---
def analyze_resume(resume_file, job_description_file):
"""Analyzes the resume and job description."""
if resume_file.name.endswith(('.pdf', '.txt')):
if resume_file.name.endswith('.pdf'):
resume_text = extract_text_from_pdf(resume_file.name)
else:
resume_text = extract_text_from_txt(resume_file.name)
else:
return "Invalid file type. Please upload a PDF or TXT file for the resume."
if job_description_file.name.endswith('.txt'):
job_description_text = extract_text_from_txt(job_description_file.name)
else:
return "Invalid file type. Please upload a TXT file for the job description."
job_description_skills = process_job_description(job_description_text)
resume_skills = extract_skills_llama(resume_text)
similarity_score = calculate_resume_similarity(resume_text, job_description_text)
communication_response = communication_generator(f"I am reviewing a resume for a {job_description_text} position. The candidate has the following skills: {', '.join(resume_skills)}")
sentiment = sentiment_model(resume_text)
enhanced_resume = enhance_resume(resume_text)
enhanced_job_description = enhance_job_description(job_description_text)
return (
f"## Resume and Job Description Analysis",
f"**Similarity Score:** {similarity_score:.2f}",
f"**Communication Response:** {communication_response}",
f"**Sentiment:** {sentiment}",
f"**Resume Skills:** {', '.join(resume_skills)}",
f"**Job Description Skills:** {', '.join(job_description_skills)}",
f"**Enhanced Resume:**\n{enhanced_resume}",
f"**Enhanced Job Description:**\n{enhanced_job_description}",
)
# --- Offer Letter Generation ---
def generate_offer_letter(template_file, candidate_name, role, start_date, hours):
"""Generates an offer letter."""
# Parse the start date string
try:
start_date = datetime.strptime(start_date, "%Y-%m-%d").strftime("%B %d, %Y") # Format for DocxTemplate
except ValueError:
return "Invalid date format. Please use YYYY-MM-DD."
# Define the context variables
context = {
'candidate_name': candidate_name,
'role': role,
'start_date': start_date,
'hours': hours,
}
# Load the template document and render it with the context variables
tpl = DocxTemplate(template_file.name)
tpl.render(context)
# Save the generated document
script_dir = os.path.dirname(os.path.abspath(__file__))
docx_file_path = os.path.join(script_dir, f"{candidate_name}_offer_letter.docx")
tpl.save(docx_file_path)
# Return the file object
return open(docx_file_path, 'rb')
# --- Streamlit Interface ---
st.set_page_config(
page_title="HR Assistant",
page_icon=":robot:",
layout="wide",
initial_sidebar_state="expanded",
)
st.title("HR Assistant")
tab1, tab2 = st.tabs(["Resume Analyzer", "Offer Letter Generator"])
with tab1:
st.header("Resume and Job Description Analyzer")
resume_file = st.file_uploader("Upload Resume (PDF or TXT)", type=['pdf', 'txt'])
job_description_file = st.file_uploader("Upload Job Description (TXT)", type=['txt'])
if resume_file is not None and job_description_file is not None:
analysis_results = analyze_resume(resume_file, job_description_file)
for result in analysis_results:
st.markdown(result)
with tab2:
st.header("Offer Letter Generator")
template_file = st.file_uploader("Upload Offer Letter Template (DOCX)", type=['docx'])
candidate_name = st.text_input("Candidate Name")
role = st.text_input("Role")
start_date = st.text_input("Start Date (YYYY-MM-DD)")
hours = st.number_input("Hours per Week")
if template_file is not None and candidate_name and role and start_date and hours:
offer_letter = generate_offer_letter(template_file, candidate_name, role, start_date, hours)
st.download_button("Download Offer Letter", offer_letter, file_name=f"{candidate_name}_offer_letter.docx")