File size: 6,264 Bytes
abaea54
 
c9c4d75
 
9c2ae81
c9c4d75
 
9c2ae81
 
c9c4d75
9c2ae81
 
c9c4d75
9c2ae81
 
c9c4d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr

from huggingface_hub import login

# ! pip install accelerate peft bitsandbytes pip install git+https://github.com/huggingface/transformers trl py7zr auto-gptq optimum

import torch
# from datasets import Dataset
# from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig, TrainingArguments
# from trl import SFTTrainer
# import pandas as pd

# import json
# import pandas as pd

# def load_data_to_dataframe(json_file_path):
#     """
#     Load data from a JSON file and create a DataFrame with questions and answers.

#     Args:
#     json_file_path (str): Path to the JSON file.

#     Returns:
#     pd.DataFrame: DataFrame containing the questions and answers.
#     """
#     questions = []
#     answers = []

#     with open(json_file_path, 'r') as f:
#         data = json.load(f)

#         for entry in data:
#             for message in entry["messages"]:
#                 if message["role"] == "user":
#                     questions.append(message["content"])
#                 elif message["role"] == "assistant":
#                     answers.append(message["content"])

#     # Create DataFrame
#     df = pd.DataFrame({
#         'question': questions,
#         'answer': answers
#     })

#     return df

# def finetune_mistral_7b():
# # Replace 'your_token' with your actual Hugging Face token
#     json_file_path = 'Dataset for finetuning Viv.json'
#     df = load_data_to_dataframe(json_file_path)
#     df["text"] = df[["question", "answer"]].apply(lambda x: "###Human: Answer this question: " + x["question"] + "\n###Assistant: " +x["answer"], axis=1)
#     print(df.iloc[0])
#     data = Dataset.from_pandas(df)
#     tokenizer = AutoTokenizer.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
#     tokenizer.pad_token = tokenizer.eos_token
#     quantization_config_loading = GPTQConfig(bits=4, disable_exllama=True, tokenizer=tokenizer)
#     model = AutoModelForCausalLM.from_pretrained(
#                               "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
#                               quantization_config=quantization_config_loading,
#                               device_map="auto"
#                         )

#     print(model)
#     model.config.use_cache = False
#     model.config.pretraining_tp = 1
#     model.gradient_checkpointing_enable()
#     model = prepare_model_for_kbit_training(model)

#     peft_config = LoraConfig(
#         r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"]
#     )
#     model = get_peft_model(model, peft_config)

#     training_arguments = TrainingArguments(
#         output_dir="mistral-finetuned-Viv",
#         per_device_train_batch_size=8,
#         gradient_accumulation_steps=1,
#         optim="paged_adamw_32bit",
#         learning_rate=2e-4,
#         lr_scheduler_type="cosine",
#         save_strategy="epoch",
#         logging_steps=100,
#         num_train_epochs=1,
#         max_steps=100,
#         fp16=True,
#         push_to_hub=True,
#         hub_model_id="Dumele/viv-updated2",  # Specify the repository name
#         hub_strategy="every_save"
#     )

#     trainer = SFTTrainer(
#         model=model,
#         train_dataset=data,
#         peft_config=peft_config,
#         dataset_text_field="text",
#         args=training_arguments,
#         tokenizer=tokenizer,
#         packing=False,
#         max_seq_length=512
#     )

#     trainer.train()
#     trainer.push_to_hub()

# if __name__ == "__main__":
#     finetune_mistral_7b()







from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
import torch

# Define the repository where your model is saved
model_repo = "Dumele/viv-updated2"  # Replace with your actual repository

# Load the tokenizer from the repository
tokenizer = AutoTokenizer.from_pretrained(model_repo)

# Define the configuration with `disable_exllama` set to True
quantization_config = GPTQConfig(bits=4, disable_exllama=True)

# Load the model with the custom configuration
model = AutoModelForCausalLM.from_pretrained(model_repo, quantization_config=quantization_config)

# Move the model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)




from transformers import pipeline

# Create a text generation pipeline
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)

# Define a prompt
prompt = "###Human: Answer this question: What exactly does Viv do?\n###Assistant:"

# Generate text
generated_text = text_generator(prompt, max_length=100, num_return_sequences=1)

# Print the generated text
print(generated_text[0]['generated_text'])

# pip install gradio

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr

# Define the repository where your model is saved
model_repo = "Dumele/viv-updated2"  # Replace with your actual repository name

# Load the tokenizer from the repository
tokenizer = AutoTokenizer.from_pretrained(model_repo)

# Define the configuration with `disable_exllama` set to True
quantization_config = GPTQConfig(bits=4, disable_exllama=True)

# Load the model with the custom configuration
model = AutoModelForCausalLM.from_pretrained(model_repo, quantization_config=quantization_config)

# Move the model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Create a text generation pipeline
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)

def generate_response(prompt):
    generated_text = text_generator(prompt, max_length=100, num_return_sequences=1)
    return generated_text[0]['generated_text']

# Create a Gradio interface
iface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
    outputs="text",
    title="Chat with VivBeta",
    description="Enter a prompt to interact with the fine-tuned model."
)

iface.launch()

# Commented out IPython magic to ensure Python compatibility.
# %%bash
#