Spaces:
Sleeping
Sleeping
Commit
•
e4b60e9
1
Parent(s):
9c2ae81
Update app.py (#2)
Browse files- Update app.py (f4e3a76b11e6d53bbc1908076bc58dcb42f37db5)
Co-authored-by: Christian <Sh3rlockhomes@users.noreply.huggingface.co>
app.py
CHANGED
@@ -2,116 +2,10 @@ import gradio as gr
|
|
2 |
|
3 |
from huggingface_hub import login
|
4 |
|
5 |
-
# ! pip install accelerate peft bitsandbytes pip install git+https://github.com/huggingface/transformers trl py7zr auto-gptq optimum
|
6 |
-
|
7 |
import torch
|
8 |
# from datasets import Dataset
|
9 |
# from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig, TrainingArguments
|
11 |
-
# from trl import SFTTrainer
|
12 |
-
# import pandas as pd
|
13 |
-
|
14 |
-
# import json
|
15 |
-
# import pandas as pd
|
16 |
-
|
17 |
-
# def load_data_to_dataframe(json_file_path):
|
18 |
-
# """
|
19 |
-
# Load data from a JSON file and create a DataFrame with questions and answers.
|
20 |
-
|
21 |
-
# Args:
|
22 |
-
# json_file_path (str): Path to the JSON file.
|
23 |
-
|
24 |
-
# Returns:
|
25 |
-
# pd.DataFrame: DataFrame containing the questions and answers.
|
26 |
-
# """
|
27 |
-
# questions = []
|
28 |
-
# answers = []
|
29 |
-
|
30 |
-
# with open(json_file_path, 'r') as f:
|
31 |
-
# data = json.load(f)
|
32 |
-
|
33 |
-
# for entry in data:
|
34 |
-
# for message in entry["messages"]:
|
35 |
-
# if message["role"] == "user":
|
36 |
-
# questions.append(message["content"])
|
37 |
-
# elif message["role"] == "assistant":
|
38 |
-
# answers.append(message["content"])
|
39 |
-
|
40 |
-
# # Create DataFrame
|
41 |
-
# df = pd.DataFrame({
|
42 |
-
# 'question': questions,
|
43 |
-
# 'answer': answers
|
44 |
-
# })
|
45 |
-
|
46 |
-
# return df
|
47 |
-
|
48 |
-
# def finetune_mistral_7b():
|
49 |
-
# # Replace 'your_token' with your actual Hugging Face token
|
50 |
-
# json_file_path = 'Dataset for finetuning Viv.json'
|
51 |
-
# df = load_data_to_dataframe(json_file_path)
|
52 |
-
# df["text"] = df[["question", "answer"]].apply(lambda x: "###Human: Answer this question: " + x["question"] + "\n###Assistant: " +x["answer"], axis=1)
|
53 |
-
# print(df.iloc[0])
|
54 |
-
# data = Dataset.from_pandas(df)
|
55 |
-
# tokenizer = AutoTokenizer.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.1-GPTQ")
|
56 |
-
# tokenizer.pad_token = tokenizer.eos_token
|
57 |
-
# quantization_config_loading = GPTQConfig(bits=4, disable_exllama=True, tokenizer=tokenizer)
|
58 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
59 |
-
# "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
|
60 |
-
# quantization_config=quantization_config_loading,
|
61 |
-
# device_map="auto"
|
62 |
-
# )
|
63 |
-
|
64 |
-
# print(model)
|
65 |
-
# model.config.use_cache = False
|
66 |
-
# model.config.pretraining_tp = 1
|
67 |
-
# model.gradient_checkpointing_enable()
|
68 |
-
# model = prepare_model_for_kbit_training(model)
|
69 |
-
|
70 |
-
# peft_config = LoraConfig(
|
71 |
-
# r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"]
|
72 |
-
# )
|
73 |
-
# model = get_peft_model(model, peft_config)
|
74 |
-
|
75 |
-
# training_arguments = TrainingArguments(
|
76 |
-
# output_dir="mistral-finetuned-Viv",
|
77 |
-
# per_device_train_batch_size=8,
|
78 |
-
# gradient_accumulation_steps=1,
|
79 |
-
# optim="paged_adamw_32bit",
|
80 |
-
# learning_rate=2e-4,
|
81 |
-
# lr_scheduler_type="cosine",
|
82 |
-
# save_strategy="epoch",
|
83 |
-
# logging_steps=100,
|
84 |
-
# num_train_epochs=1,
|
85 |
-
# max_steps=100,
|
86 |
-
# fp16=True,
|
87 |
-
# push_to_hub=True,
|
88 |
-
# hub_model_id="Dumele/viv-updated2", # Specify the repository name
|
89 |
-
# hub_strategy="every_save"
|
90 |
-
# )
|
91 |
-
|
92 |
-
# trainer = SFTTrainer(
|
93 |
-
# model=model,
|
94 |
-
# train_dataset=data,
|
95 |
-
# peft_config=peft_config,
|
96 |
-
# dataset_text_field="text",
|
97 |
-
# args=training_arguments,
|
98 |
-
# tokenizer=tokenizer,
|
99 |
-
# packing=False,
|
100 |
-
# max_seq_length=512
|
101 |
-
# )
|
102 |
-
|
103 |
-
# trainer.train()
|
104 |
-
# trainer.push_to_hub()
|
105 |
-
|
106 |
-
# if __name__ == "__main__":
|
107 |
-
# finetune_mistral_7b()
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
|
116 |
import torch
|
117 |
|
@@ -188,6 +82,4 @@ iface = gr.Interface(
|
|
188 |
|
189 |
iface.launch()
|
190 |
|
191 |
-
|
192 |
-
# %%bash
|
193 |
-
#
|
|
|
2 |
|
3 |
from huggingface_hub import login
|
4 |
|
|
|
|
|
5 |
import torch
|
6 |
# from datasets import Dataset
|
7 |
# from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig, TrainingArguments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
|
10 |
import torch
|
11 |
|
|
|
82 |
|
83 |
iface.launch()
|
84 |
|
85 |
+
|
|
|
|